


Saving a Figure with Exact Size in Pixels
While Matplotlib generally specifies figure sizes in inches and dots per inch (dpi), it is possible to save the contents of a figure to disk with an exact size in pixels.
Understanding DPI
The key to specifying pixel size is to determine the DPI of the intended display device. You can use online tools to detect your monitor's DPI.
Method
-
Set Figure Size:
<code class="python">fig = plt.figure(frameon=False) fig.set_size_inches((width / dpi, height / dpi))</code>
- Replace width and height with the desired number of pixels.
- Divide by dpi to convert pixels to inches.
-
Remove Axes:
<code class="python">ax = plt.Axes(fig, [0., 0., 1., 1.]) ax.set_axis_off() fig.add_axes(ax)</code>
-
Plot Image and Save:
<code class="python">ax.imshow(im_np, aspect='normal') fig.savefig(some_path, dpi=dpi)</code>
Example
To save a figure of size 800x800 pixels on a monitor with a DPI of 96:
<code class="python">plt.figure(frameon=False) fig.set_size_inches((800 / 96, 800 / 96)) ax = plt.Axes(fig, [0., 0., 1., 1.]) ax.set_axis_off() fig.add_axes(ax) ax.imshow(im_np, aspect='normal') fig.savefig(some_path, dpi=96)</code>
Resolution Control
To save the figure with a higher resolution, simply increase the dpi value when saving the figure:
<code class="python">fig.savefig(some_path, dpi=2 * dpi) # For 2x the resolution</code>
Note: This method only works with certain backends, such as PNG.
The above is the detailed content of How to Save a Matplotlib Figure with Specific Pixel Dimensions?. For more information, please follow other related articles on the PHP Chinese website!

Arraysaregenerallymorememory-efficientthanlistsforstoringnumericaldataduetotheirfixed-sizenatureanddirectmemoryaccess.1)Arraysstoreelementsinacontiguousblock,reducingoverheadfrompointersormetadata.2)Lists,oftenimplementedasdynamicarraysorlinkedstruct

ToconvertaPythonlisttoanarray,usethearraymodule:1)Importthearraymodule,2)Createalist,3)Usearray(typecode,list)toconvertit,specifyingthetypecodelike'i'forintegers.Thisconversionoptimizesmemoryusageforhomogeneousdata,enhancingperformanceinnumericalcomp

Python lists can store different types of data. The example list contains integers, strings, floating point numbers, booleans, nested lists, and dictionaries. List flexibility is valuable in data processing and prototyping, but it needs to be used with caution to ensure the readability and maintainability of the code.

Pythondoesnothavebuilt-inarrays;usethearraymoduleformemory-efficienthomogeneousdatastorage,whilelistsareversatileformixeddatatypes.Arraysareefficientforlargedatasetsofthesametype,whereaslistsofferflexibilityandareeasiertouseformixedorsmallerdatasets.

ThemostcommonlyusedmoduleforcreatingarraysinPythonisnumpy.1)Numpyprovidesefficienttoolsforarrayoperations,idealfornumericaldata.2)Arrayscanbecreatedusingnp.array()for1Dand2Dstructures.3)Numpyexcelsinelement-wiseoperationsandcomplexcalculationslikemea

ToappendelementstoaPythonlist,usetheappend()methodforsingleelements,extend()formultipleelements,andinsert()forspecificpositions.1)Useappend()foraddingoneelementattheend.2)Useextend()toaddmultipleelementsefficiently.3)Useinsert()toaddanelementataspeci

TocreateaPythonlist,usesquarebrackets[]andseparateitemswithcommas.1)Listsaredynamicandcanholdmixeddatatypes.2)Useappend(),remove(),andslicingformanipulation.3)Listcomprehensionsareefficientforcreatinglists.4)Becautiouswithlistreferences;usecopy()orsl

In the fields of finance, scientific research, medical care and AI, it is crucial to efficiently store and process numerical data. 1) In finance, using memory mapped files and NumPy libraries can significantly improve data processing speed. 2) In the field of scientific research, HDF5 files are optimized for data storage and retrieval. 3) In medical care, database optimization technologies such as indexing and partitioning improve data query performance. 4) In AI, data sharding and distributed training accelerate model training. System performance and scalability can be significantly improved by choosing the right tools and technologies and weighing trade-offs between storage and processing speeds.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Dreamweaver Mac version
Visual web development tools

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.
