Home >Backend Development >Python Tutorial >How to Convert a Pandas Timezone-Aware DateTimeIndex to a Naive Timestamp in a Specific Timezone?
Convert Pandas Timezone-Aware DateTimeIndex to Naive Timestamp in Specified Timezone
Pandas offers the tz_localize function to create a timezone-aware Timestamp or DateTimeIndex. But what if you want to undo this operation? How do you convert a timezone-aware Timestamp to a naive one without altering its timezone?
Problem:
Let's consider a timezone-aware DateTimeIndex:
<code class="python">t = pd.date_range(start="2013-05-18 12:00:00", periods=10, freq='s', tz="Europe/Brussels")</code>
Setting the timezone to None removes the timezone but converts the timestamps to UTC, altering the visible time.
Solution (Pandas 0.15.0 ):
Since Pandas 0.15.0, the tz_localize method can be used to set the timezone to None. This removes the timezone information while preserving the local time:
<code class="python">t.tz_localize(None)</code>
This results in a naive local time DateTimeIndex.
Alternatively, tz_convert(None) can be used to convert to naive UTC time:
<code class="python">t.tz_convert(None)</code>
Performance Considerations:
The tz_localize(None) method is significantly more efficient than using a loop to replace the timezone information:
<code class="python">%timeit t.tz_localize(None) 1000 loops, best of 3: 233 µs per loop %timeit pd.DatetimeIndex([i.replace(tzinfo=None) for i in t]) 10 loops, best of 3: 99.7 ms per loop</code>
The above is the detailed content of How to Convert a Pandas Timezone-Aware DateTimeIndex to a Naive Timestamp in a Specific Timezone?. For more information, please follow other related articles on the PHP Chinese website!