Home >Backend Development >Python Tutorial >How to Calculate a Column in a DataFrame Using Previous Row Values with `apply()`?
In pandas, the apply() function is commonly employed to apply a function to each row of a DataFrame. However, challenges arise when the previous row value is also calculated using the same apply() method.
Consider the following DataFrame:
Index_Date | A | B | C | D |
---|---|---|---|---|
2015-01-31 | 10 | 10 | NaN | 10 |
2015-02-01 | 2 | 3 | NaN | 22 |
2015-02-02 | 10 | 60 | NaN | 280 |
2015-02-03 | 10 | 100 | NaN | 250 |
The objective is to derive Column C:
To achieve this, we first set the initial value of C for 2015-01-31:
<code class="python">df.loc[0, 'C'] = df.loc[0, 'D']</code>
Then, we iterate through the remaining rows and update the C values with the desired calculations:
<code class="python">for i in range(1, len(df)): df.loc[i, 'C'] = df.loc[i-1, 'C'] * df.loc[i, 'A'] + df.loc[i, 'B']</code>
The final DataFrame after these operations:
Index_Date | A | B | C | D |
---|---|---|---|---|
2015-01-31 | 10 | 10 | 10 | 10 |
2015-02-01 | 2 | 3 | 23 | 22 |
2015-02-02 | 10 | 60 | 290 | 280 |
The above is the detailed content of How to Calculate a Column in a DataFrame Using Previous Row Values with `apply()`?. For more information, please follow other related articles on the PHP Chinese website!