


Understanding Identical Object IDs in CPython
In CPython, the built-in function id() returns a unique integer representing the object's memory address. Intriguingly, under certain circumstances, two distinct objects can have the same ID, as observed in the following example:
<code class="python">tuple1 = () tuple2 = () dict1 = {} dict2 = {} list1 = [] list2 = [] # Tuples are immutable assert(id(tuple1) == id(tuple2)) # Dicts are mutable assert(id(dict1) != id(dict2)) # Lists are mutable too assert(id(list1) != id(list2)) # Unexpectedly, empty dicts and lists have the same ID assert(id({}) == id({})) assert(id([]) == id([]))</code>
The Reason Behind the Behavior
This peculiar phenomenon occurs due to the runtime behavior of CPython's memory allocator and the way it handles the creation and destruction of objects. When id({}) is called, CPython creates a new dictionary object and assigns it to a temporary location in memory. However, this temporary object is destroyed immediately after its ID is returned by the id() function. When the next id({}) is called, the new dictionary may happen to be created in the same memory location as the previous one, resulting in the same ID even though these objects are distinct.
This reasoning is further supported by the behavior observed in the following sequence:
<code class="python">id([]) 4330909912 x = [] id(x) 4330909912 id([]) 4334243440</code>
Impact of Mutability and Caching
It's worth noting that mutability plays an indirect role in this behavior. While mutable objects (such as lists and dictionaries) are not eligible for code object caching, immutable objects (like empty tuples and certain strings) are. This means that within the same code object, these immutable objects will be re-used, potentially leading to the assignment of the same ID to distinct immutable objects.
Id Uniqueness and Object Lifetime
In summary, an object's ID is unique only for the duration of its lifetime. Once an object is destroyed or before it is created, another object may be assigned the same ID. This behavior underscores the ephemeral nature of object IDs in CPython and the importance of understanding the memory allocation and object creation dynamics in the context of the underlying Python implementation.
The above is the detailed content of Why can two distinct objects in CPython have the same ID even though they are not the same object?. For more information, please follow other related articles on the PHP Chinese website!

The basic syntax for Python list slicing is list[start:stop:step]. 1.start is the first element index included, 2.stop is the first element index excluded, and 3.step determines the step size between elements. Slices are not only used to extract data, but also to modify and invert lists.

Listsoutperformarraysin:1)dynamicsizingandfrequentinsertions/deletions,2)storingheterogeneousdata,and3)memoryefficiencyforsparsedata,butmayhaveslightperformancecostsincertainoperations.

ToconvertaPythonarraytoalist,usethelist()constructororageneratorexpression.1)Importthearraymoduleandcreateanarray.2)Uselist(arr)or[xforxinarr]toconvertittoalist,consideringperformanceandmemoryefficiencyforlargedatasets.

ChoosearraysoverlistsinPythonforbetterperformanceandmemoryefficiencyinspecificscenarios.1)Largenumericaldatasets:Arraysreducememoryusage.2)Performance-criticaloperations:Arraysofferspeedboostsfortaskslikeappendingorsearching.3)Typesafety:Arraysenforc

In Python, you can use for loops, enumerate and list comprehensions to traverse lists; in Java, you can use traditional for loops and enhanced for loops to traverse arrays. 1. Python list traversal methods include: for loop, enumerate and list comprehension. 2. Java array traversal methods include: traditional for loop and enhanced for loop.

The article discusses Python's new "match" statement introduced in version 3.10, which serves as an equivalent to switch statements in other languages. It enhances code readability and offers performance benefits over traditional if-elif-el

Exception Groups in Python 3.11 allow handling multiple exceptions simultaneously, improving error management in concurrent scenarios and complex operations.

Function annotations in Python add metadata to functions for type checking, documentation, and IDE support. They enhance code readability, maintenance, and are crucial in API development, data science, and library creation.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SublimeText3 English version
Recommended: Win version, supports code prompts!

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Mac version
God-level code editing software (SublimeText3)

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.
