Home > Article > Backend Development > How can Apache Spark be used for efficient string matching and verification of text extracted from images using OCR?
Optical character recognition (OCR) tools often introduce errors when extracting text from images. To effectively match these extracted texts against a reference dataset, an efficient algorithm in Spark is required.
Given the challenges faced in OCR extraction, such as character replacements, emoji omissions, and white space removal, a comprehensive approach is needed. Considering Spark's strengths, a combination of machine learning transformers can be leveraged to achieve an efficient solution.
Pipeline Approach
A pipeline can be constructed to perform the following steps:
Example Implementation
<code class="scala">import org.apache.spark.ml.feature.{RegexTokenizer, NGram, HashingTF, MinHashLSH, MinHashLSHModel} // Input text val query = Seq("Hello there 7l | real|y like Spark!").toDF("text") // Reference data val db = Seq( "Hello there ?! I really like Spark ❤️!", "Can anyone suggest an efficient algorithm" ).toDF("text") // Create pipeline val pipeline = new Pipeline().setStages(Array( new RegexTokenizer().setPattern("").setInputCol("text").setMinTokenLength(1).setOutputCol("tokens"), new NGram().setN(3).setInputCol("tokens").setOutputCol("ngrams"), new HashingTF().setInputCol("ngrams").setOutputCol("vectors"), new MinHashLSH().setInputCol("vectors").setOutputCol("lsh") )) // Fit on reference data val model = pipeline.fit(db) // Transform both input text and reference data val db_hashed = model.transform(db) val query_hashed = model.transform(query) // Approximate similarity join model.stages.last.asInstanceOf[MinHashLSHModel] .approxSimilarityJoin(db_hashed, query_hashed, 0.75).show</code>
This approach effectively handles the challenges of OCR text extraction and provides an efficient way to match extracted texts against a large dataset in Spark.
The above is the detailed content of How can Apache Spark be used for efficient string matching and verification of text extracted from images using OCR?. For more information, please follow other related articles on the PHP Chinese website!