


Efficient String Matching in Apache Spark for Extracted Text Verification
Optical character recognition (OCR) tools often introduce errors when extracting text from images. To effectively match these extracted texts against a reference dataset, an efficient algorithm in Spark is required.
Given the challenges faced in OCR extraction, such as character replacements, emoji omissions, and white space removal, a comprehensive approach is needed. Considering Spark's strengths, a combination of machine learning transformers can be leveraged to achieve an efficient solution.
Pipeline Approach
A pipeline can be constructed to perform the following steps:
- Tokenization: Using RegexTokenizer, the input text is split into tokens of a minimum length, accounting for character replacements like "I" and "|".
- N-Grams: NGram extracts n-gram sequences of tokens to capture potential symbol omissions.
- Vectorization: To facilitate efficient similarity measurement, HashingTF or CountVectorizer converts n-grams into numerical vectors.
- Locality-Sensitive Hashing (LSH): To approximate the cosine similarity between vectors, MinHashLSH utilizes locality-sensitive hashing.
Example Implementation
<code class="scala">import org.apache.spark.ml.feature.{RegexTokenizer, NGram, HashingTF, MinHashLSH, MinHashLSHModel} // Input text val query = Seq("Hello there 7l | real|y like Spark!").toDF("text") // Reference data val db = Seq( "Hello there ?! I really like Spark ❤️!", "Can anyone suggest an efficient algorithm" ).toDF("text") // Create pipeline val pipeline = new Pipeline().setStages(Array( new RegexTokenizer().setPattern("").setInputCol("text").setMinTokenLength(1).setOutputCol("tokens"), new NGram().setN(3).setInputCol("tokens").setOutputCol("ngrams"), new HashingTF().setInputCol("ngrams").setOutputCol("vectors"), new MinHashLSH().setInputCol("vectors").setOutputCol("lsh") )) // Fit on reference data val model = pipeline.fit(db) // Transform both input text and reference data val db_hashed = model.transform(db) val query_hashed = model.transform(query) // Approximate similarity join model.stages.last.asInstanceOf[MinHashLSHModel] .approxSimilarityJoin(db_hashed, query_hashed, 0.75).show</code>
This approach effectively handles the challenges of OCR text extraction and provides an efficient way to match extracted texts against a large dataset in Spark.
The above is the detailed content of How can Apache Spark be used for efficient string matching and verification of text extracted from images using OCR?. For more information, please follow other related articles on the PHP Chinese website!

Pythonlistsareimplementedasdynamicarrays,notlinkedlists.1)Theyarestoredincontiguousmemoryblocks,whichmayrequirereallocationwhenappendingitems,impactingperformance.2)Linkedlistswouldofferefficientinsertions/deletionsbutslowerindexedaccess,leadingPytho

Pythonoffersfourmainmethodstoremoveelementsfromalist:1)remove(value)removesthefirstoccurrenceofavalue,2)pop(index)removesandreturnsanelementataspecifiedindex,3)delstatementremoveselementsbyindexorslice,and4)clear()removesallitemsfromthelist.Eachmetho

Toresolvea"Permissiondenied"errorwhenrunningascript,followthesesteps:1)Checkandadjustthescript'spermissionsusingchmod xmyscript.shtomakeitexecutable.2)Ensurethescriptislocatedinadirectorywhereyouhavewritepermissions,suchasyourhomedirectory.

ArraysarecrucialinPythonimageprocessingastheyenableefficientmanipulationandanalysisofimagedata.1)ImagesareconvertedtoNumPyarrays,withgrayscaleimagesas2Darraysandcolorimagesas3Darrays.2)Arraysallowforvectorizedoperations,enablingfastadjustmentslikebri

Arraysaresignificantlyfasterthanlistsforoperationsbenefitingfromdirectmemoryaccessandfixed-sizestructures.1)Accessingelements:Arraysprovideconstant-timeaccessduetocontiguousmemorystorage.2)Iteration:Arraysleveragecachelocalityforfasteriteration.3)Mem

Arraysarebetterforelement-wiseoperationsduetofasteraccessandoptimizedimplementations.1)Arrayshavecontiguousmemoryfordirectaccess,enhancingperformance.2)Listsareflexiblebutslowerduetopotentialdynamicresizing.3)Forlargedatasets,arrays,especiallywithlib

Mathematical operations of the entire array in NumPy can be efficiently implemented through vectorized operations. 1) Use simple operators such as addition (arr 2) to perform operations on arrays. 2) NumPy uses the underlying C language library, which improves the computing speed. 3) You can perform complex operations such as multiplication, division, and exponents. 4) Pay attention to broadcast operations to ensure that the array shape is compatible. 5) Using NumPy functions such as np.sum() can significantly improve performance.

In Python, there are two main methods for inserting elements into a list: 1) Using the insert(index, value) method, you can insert elements at the specified index, but inserting at the beginning of a large list is inefficient; 2) Using the append(value) method, add elements at the end of the list, which is highly efficient. For large lists, it is recommended to use append() or consider using deque or NumPy arrays to optimize performance.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SublimeText3 English version
Recommended: Win version, supports code prompts!

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

Dreamweaver CS6
Visual web development tools

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft
