search
HomeBackend DevelopmentPython TutorialHow do you replace NaN values in a pandas DataFrame with the average of each corresponding column?

How do you replace NaN values in a pandas DataFrame with the average of each corresponding column?

Replace NaN Values with Column Averages in a pandas DataFrame

In a pandas DataFrame, NaN values can arise, necessitating the replacement with appropriate values for data analysis. This article addresses the challenge of replacing NaNs with the average of each corresponding column.

Unlike a numpy array, a pandas DataFrame cannot directly apply the averaging technique used for a numpy array. Instead, the DataFrame.fillna method provides a straightforward solution.

Using DataFrame.fillna

To fill NaN values with the column mean, use the following code:

<code class="python">import pandas as pd

# Create a DataFrame with NaN values
df = pd.DataFrame({
    'A': [-0.166919, -0.297953, -0.120211, np.nan, np.nan, -0.788073, -0.916080, -0.887858, 1.948430, 0.019698],
    'B': [0.979728, -0.912674, -0.540679, -2.027325, np.nan, np.nan, -0.612343, 1.033826, 1.025011, -0.795876],
    'C': [-0.632955, -1.365463, -0.680481, 1.533582, 0.461821, np.nan, np.nan, np.nan, -2.982224, -0.046431]
})

print("Original DataFrame with NaN values:")
print(df)

# Calculate column means
column_means = df.mean()
print("\nColumn means:")
print(column_means)

# Replace NaN values with column means
df_filled = df.fillna(column_means)
print("\nDataFrame with NaN values replaced by column means:")
print(df_filled)</code>

Example:

Consider the following DataFrame with NaN values:

          A         B         C
0 -0.166919  0.979728 -0.632955
1 -0.297953 -0.912674 -1.365463
2 -0.120211 -0.540679 -0.680481
3       NaN -2.027325  1.533582
4       NaN       NaN  0.461821
5 -0.788073       NaN       NaN
6 -0.916080 -0.612343       NaN
7 -0.887858  1.033826       NaN
8  1.948430  1.025011 -2.982224
9  0.019698 -0.795876 -0.046431

Using DataFrame.fillna, the NaN values are replaced with the column means:

           A          B          C
0  -0.166919   0.979728  -0.632955
1  -0.297953  -0.912674  -1.365463
2  -0.120211  -0.540679  -0.680481
3  -0.151121  -2.027325   1.533582
4  -0.151121  -0.231291   0.461821
5  -0.788073  -0.231291  -0.530307
6  -0.916080  -0.612343  -0.530307
7  -0.887858   1.033826  -0.530307
8   1.948430   1.025011  -2.982224
9   0.019698  -0.795876  -0.046431

Therefore, the NaN values have been replaced with the appropriate column averages.

The above is the detailed content of How do you replace NaN values in a pandas DataFrame with the average of each corresponding column?. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Why are arrays generally more memory-efficient than lists for storing numerical data?Why are arrays generally more memory-efficient than lists for storing numerical data?May 05, 2025 am 12:15 AM

Arraysaregenerallymorememory-efficientthanlistsforstoringnumericaldataduetotheirfixed-sizenatureanddirectmemoryaccess.1)Arraysstoreelementsinacontiguousblock,reducingoverheadfrompointersormetadata.2)Lists,oftenimplementedasdynamicarraysorlinkedstruct

How can you convert a Python list to a Python array?How can you convert a Python list to a Python array?May 05, 2025 am 12:10 AM

ToconvertaPythonlisttoanarray,usethearraymodule:1)Importthearraymodule,2)Createalist,3)Usearray(typecode,list)toconvertit,specifyingthetypecodelike'i'forintegers.Thisconversionoptimizesmemoryusageforhomogeneousdata,enhancingperformanceinnumericalcomp

Can you store different data types in the same Python list? Give an example.Can you store different data types in the same Python list? Give an example.May 05, 2025 am 12:10 AM

Python lists can store different types of data. The example list contains integers, strings, floating point numbers, booleans, nested lists, and dictionaries. List flexibility is valuable in data processing and prototyping, but it needs to be used with caution to ensure the readability and maintainability of the code.

What is the difference between arrays and lists in Python?What is the difference between arrays and lists in Python?May 05, 2025 am 12:06 AM

Pythondoesnothavebuilt-inarrays;usethearraymoduleformemory-efficienthomogeneousdatastorage,whilelistsareversatileformixeddatatypes.Arraysareefficientforlargedatasetsofthesametype,whereaslistsofferflexibilityandareeasiertouseformixedorsmallerdatasets.

What module is commonly used to create arrays in Python?What module is commonly used to create arrays in Python?May 05, 2025 am 12:02 AM

ThemostcommonlyusedmoduleforcreatingarraysinPythonisnumpy.1)Numpyprovidesefficienttoolsforarrayoperations,idealfornumericaldata.2)Arrayscanbecreatedusingnp.array()for1Dand2Dstructures.3)Numpyexcelsinelement-wiseoperationsandcomplexcalculationslikemea

How do you append elements to a Python list?How do you append elements to a Python list?May 04, 2025 am 12:17 AM

ToappendelementstoaPythonlist,usetheappend()methodforsingleelements,extend()formultipleelements,andinsert()forspecificpositions.1)Useappend()foraddingoneelementattheend.2)Useextend()toaddmultipleelementsefficiently.3)Useinsert()toaddanelementataspeci

How do you create a Python list? Give an example.How do you create a Python list? Give an example.May 04, 2025 am 12:16 AM

TocreateaPythonlist,usesquarebrackets[]andseparateitemswithcommas.1)Listsaredynamicandcanholdmixeddatatypes.2)Useappend(),remove(),andslicingformanipulation.3)Listcomprehensionsareefficientforcreatinglists.4)Becautiouswithlistreferences;usecopy()orsl

Discuss real-world use cases where efficient storage and processing of numerical data are critical.Discuss real-world use cases where efficient storage and processing of numerical data are critical.May 04, 2025 am 12:11 AM

In the fields of finance, scientific research, medical care and AI, it is crucial to efficiently store and process numerical data. 1) In finance, using memory mapped files and NumPy libraries can significantly improve data processing speed. 2) In the field of scientific research, HDF5 files are optimized for data storage and retrieval. 3) In medical care, database optimization technologies such as indexing and partitioning improve data query performance. 4) In AI, data sharding and distributed training accelerate model training. System performance and scalability can be significantly improved by choosing the right tools and technologies and weighing trade-offs between storage and processing speeds.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

EditPlus Chinese cracked version

EditPlus Chinese cracked version

Small size, syntax highlighting, does not support code prompt function

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

SublimeText3 Linux new version

SublimeText3 Linux new version

SublimeText3 Linux latest version

VSCode Windows 64-bit Download

VSCode Windows 64-bit Download

A free and powerful IDE editor launched by Microsoft