Home >Backend Development >Python Tutorial >How do you convert a Pandas DataFrame column or row to a list?

How do you convert a Pandas DataFrame column or row to a list?

Mary-Kate Olsen
Mary-Kate OlsenOriginal
2024-10-27 01:02:30987browse

How do you convert a Pandas DataFrame column or row to a list?

How to Convert Pandas DataFrame Column or Row to List

Within a pandas DataFrame, each column is represented by a pandas Series object. To obtain a list representation of a column, you can use the tolist() method on the Series object. For example:

<code class="python">import pandas as pd

data_dict = {'cluster': ['A', 'A', 'A', 'B', 'B', 'B', 'C', 'C', 'C'],
             'load_date': ['1/1/2014', '2/1/2014', '3/1/2014', '4/1/2014', '4/1/2014', '4/1/2014', '7/1/2014', '8/1/2014', '9/1/2014'],
             'budget': [1000, 12000, 36000, 15000, 12000, 90000, 22000, 30000, 53000],
             'actual': [4000, 10000, 2000, 10000, 11500, 11000, 18000, 28960, 51200],
             'fixed_price': ['Y', 'Y', 'Y', 'N', 'N', 'N', 'N', 'N', 'N']}

df = pd.DataFrame(data_dict)
cluster_list = df['cluster'].tolist()
print(cluster_list)</code>

Output:

['A', 'A', 'A', 'B', 'B', 'B', 'C', 'C', 'C']

You can also cast a Series object to a list directly using list():

<code class="python">cluster_list = list(df['cluster'])</code>

To obtain a list representation of an entire row, you can access it using the iloc() method of the DataFrame.

<code class="python">row1_list = df.iloc[0].tolist()
print(row1_list)</code>

Output:

[1000, '4000', 'Y']

Similarly, you can cast the entire row to a list directly:

<code class="python">row1_list = list(df.iloc[0])</code>

The above is the detailed content of How do you convert a Pandas DataFrame column or row to a list?. For more information, please follow other related articles on the PHP Chinese website!

Statement:
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn