Unit Testing GraphQL in Golang
Introduction
Unit testing is a crucial aspect of writing robust and reliable software. When working with GraphQL in Golang, it's essential to test both the Query and Mutation resolvers to ensure they behave as expected.
Mocking Services
One of the key challenges in testing GraphQL resolvers is that they often rely on external services, such as databases or APIs. To prevent these dependencies from interfering with our tests, we can use mocking. Mocking allows us to create fake objects that mimic the behavior of the real services.
Example
Let's consider an example where we want to test the User and ValidateAccessToken resolvers. We define a UserService interface that represents the real service, and then we implement a mock implementation for testing purposes.
<code class="go">package mocks import ( "github.com/mrdulin/gqlgen-cnode/graph/model" "github.com/stretchr/testify/mock" ) type MockedUserService struct { mock.Mock } func (s *MockedUserService) GetUserByLoginname(loginname string) *model.UserDetail { args := s.Called(loginname) return args.Get(0).(*model.UserDetail) } func (s *MockedUserService) ValidateAccessToken(accesstoken string) *model.UserEntity { args := s.Called(accesstoken) return args.Get(0).(*model.UserEntity) }</code>
Test Setup
Next, we set up our tests by creating a new Resolver with the mocked service:
<code class="go">package resolver_test import ( "testing" "github.com/99designs/gqlgen/client" "github.com/99designs/gqlgen/graphql/handler" "github.com/mrdulin/gqlgen-cnode/graph/generated" "github.com/mrdulin/gqlgen-cnode/graph/model" "github.com/mrdulin/gqlgen-cnode/graph/resolver" "github.com/mrdulin/gqlgen-cnode/mocks" "github.com/stretchr/testify/mock" "github.com/stretchr/testify/require" )</code>
Testing the ValidateAccessToken Resolver
We use the gqlgen/client package to execute GraphQL queries and mutations against our mocked service.
<code class="go">func TestMutationResolver_ValidateAccessToken(t *testing.T) { t.Run("should validate accesstoken correctly", func(t *testing.T) { testUserService := new(mocks.MockedUserService) resolvers := resolver.Resolver{UserService: testUserService} c := client.New(handler.NewDefaultServer(generated.NewExecutableSchema(generated.Config{Resolvers: &resolvers}))) ue := model.UserEntity{ID: "123", User: model.User{Loginname: &loginname, AvatarURL: &avatarURL}} testUserService.On("ValidateAccessToken", mock.AnythingOfType("string")).Return(&ue) var resp struct { ValidateAccessToken struct{ ID, Loginname, AvatarUrl string } } q := ` mutation { validateAccessToken(accesstoken: "abc") { id, loginname, avatarUrl } } ` c.MustPost(q, &resp) testUserService.AssertExpectations(t) }) }</code>
Testing the User Resolver
Similarly, we can test the User resolver:
<code class="go">func TestQueryResolver_User(t *testing.T) { t.Run("should query user correctly", func(t *testing.T) { testUserService := new(mocks.MockedUserService) resolvers := resolver.Resolver{UserService: testUserService} c := client.New(handler.NewDefaultServer(generated.NewExecutableSchema(generated.Config{Resolvers: &resolvers}))) u := model.UserDetail{User: model.User{Loginname: &loginname, AvatarURL: &avatarURL}, Score: &score, CreateAt: &createAt} testUserService.On("GetUserByLoginname", mock.AnythingOfType("string")).Return(&u) var resp struct { User struct { Loginname, AvatarURL, CreateAt string Score int } } q := ` query GetUser($loginname: String!) { user(loginname: $loginname) { loginname avatarUrl createAt score } } ` c.MustPost(q, &resp, client.Var("loginname", "mrdulin")) testUserService.AssertCalled(t, "GetUserByLoginname", "mrdulin") }) }</code>
Conclusion
Unit testing GraphQL resolvers in Golang involves using mocking to isolate your resolvers from external dependencies, allowing you to focus on testing their functionality. By following the steps outlined in this guide, you can ensure that your resolvers behave as expected and provide a consistent and reliable GraphQL API.
The above is the detailed content of How to Effectively Unit Test GraphQL Resolvers in Golang with Mocking?. For more information, please follow other related articles on the PHP Chinese website!

WhentestingGocodewithinitfunctions,useexplicitsetupfunctionsorseparatetestfilestoavoiddependencyoninitfunctionsideeffects.1)Useexplicitsetupfunctionstocontrolglobalvariableinitialization.2)Createseparatetestfilestobypassinitfunctionsandsetupthetesten

Go'serrorhandlingreturnserrorsasvalues,unlikeJavaandPythonwhichuseexceptions.1)Go'smethodensuresexpliciterrorhandling,promotingrobustcodebutincreasingverbosity.2)JavaandPython'sexceptionsallowforcleanercodebutcanleadtooverlookederrorsifnotmanagedcare

AneffectiveinterfaceinGoisminimal,clear,andpromotesloosecoupling.1)Minimizetheinterfaceforflexibilityandeaseofimplementation.2)Useinterfacesforabstractiontoswapimplementationswithoutchangingcallingcode.3)Designfortestabilitybyusinginterfacestomockdep

Centralized error handling can improve the readability and maintainability of code in Go language. Its implementation methods and advantages include: 1. Separate error handling logic from business logic and simplify code. 2. Ensure the consistency of error handling by centrally handling. 3. Use defer and recover to capture and process panics to enhance program robustness.

InGo,alternativestoinitfunctionsincludecustominitializationfunctionsandsingletons.1)Custominitializationfunctionsallowexplicitcontroloverwheninitializationoccurs,usefulfordelayedorconditionalsetups.2)Singletonsensureone-timeinitializationinconcurrent

Gohandlesinterfacesandtypeassertionseffectively,enhancingcodeflexibilityandrobustness.1)Typeassertionsallowruntimetypechecking,asseenwiththeShapeinterfaceandCircletype.2)Typeswitcheshandlemultipletypesefficiently,usefulforvariousshapesimplementingthe

Go language error handling becomes more flexible and readable through errors.Is and errors.As functions. 1.errors.Is is used to check whether the error is the same as the specified error and is suitable for the processing of the error chain. 2.errors.As can not only check the error type, but also convert the error to a specific type, which is convenient for extracting error information. Using these functions can simplify error handling logic, but pay attention to the correct delivery of error chains and avoid excessive dependence to prevent code complexity.

TomakeGoapplicationsrunfasterandmoreefficiently,useprofilingtools,leverageconcurrency,andmanagememoryeffectively.1)UsepprofforCPUandmemoryprofilingtoidentifybottlenecks.2)Utilizegoroutinesandchannelstoparallelizetasksandimproveperformance.3)Implement


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

Dreamweaver Mac version
Visual web development tools

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

SublimeText3 Mac version
God-level code editing software (SublimeText3)
