


Plotting a Stacked Bar Chart Using Pandas
Question:
How can I create a stacked bar chart with pandas, similar to the image provided? My current dataframe consists of separate columns for "Site Name" and "Abuse/NFF" counts, and I'm unable to arrange the data or generate the stacked bar chart.
Solution:
1. Data Preparation:
Create a new dataframe by grouping the data by both "Site Name" and "Abuse/NFF" and counting the occurrences of each combination.
2. Stacking the Data:
Use the .unstack() method to create a stacked dataframe, with "Site Name" as the index and "Abuse/NFF" as the columns.
3. Filling Missing Values:
Handle any missing values by filling them with zeros using the .fillna(0) method.
4. Plotting the Bar Chart:
Use the .plot() method with the kind parameter set to 'bar' and the stacked parameter set to True to generate a stacked bar chart.
Python Code:
<code class="python">import pandas as pd import matplotlib.pyplot as plt # Create a dataframe from the CSV file df = pd.read_csv("data.csv") # Group by "Site Name" and "Abuse/NFF" and count occurrences df2 = df.groupby(['Site Name', 'Abuse/NFF'])['Site Name'].count().unstack('Abuse/NFF').fillna(0) # Plot the stacked bar chart df2[['abuse','nff']].plot(kind='bar', stacked=True) plt.show()</code>
Output:
The resulting plot will resemble the image provided in the original question, displaying the stacked counts of "Abuse" and "NFF" for each "Site Name."
The above is the detailed content of How to Create a Stacked Bar Chart in Pandas with Grouped Data?. For more information, please follow other related articles on the PHP Chinese website!

Arraysaregenerallymorememory-efficientthanlistsforstoringnumericaldataduetotheirfixed-sizenatureanddirectmemoryaccess.1)Arraysstoreelementsinacontiguousblock,reducingoverheadfrompointersormetadata.2)Lists,oftenimplementedasdynamicarraysorlinkedstruct

ToconvertaPythonlisttoanarray,usethearraymodule:1)Importthearraymodule,2)Createalist,3)Usearray(typecode,list)toconvertit,specifyingthetypecodelike'i'forintegers.Thisconversionoptimizesmemoryusageforhomogeneousdata,enhancingperformanceinnumericalcomp

Python lists can store different types of data. The example list contains integers, strings, floating point numbers, booleans, nested lists, and dictionaries. List flexibility is valuable in data processing and prototyping, but it needs to be used with caution to ensure the readability and maintainability of the code.

Pythondoesnothavebuilt-inarrays;usethearraymoduleformemory-efficienthomogeneousdatastorage,whilelistsareversatileformixeddatatypes.Arraysareefficientforlargedatasetsofthesametype,whereaslistsofferflexibilityandareeasiertouseformixedorsmallerdatasets.

ThemostcommonlyusedmoduleforcreatingarraysinPythonisnumpy.1)Numpyprovidesefficienttoolsforarrayoperations,idealfornumericaldata.2)Arrayscanbecreatedusingnp.array()for1Dand2Dstructures.3)Numpyexcelsinelement-wiseoperationsandcomplexcalculationslikemea

ToappendelementstoaPythonlist,usetheappend()methodforsingleelements,extend()formultipleelements,andinsert()forspecificpositions.1)Useappend()foraddingoneelementattheend.2)Useextend()toaddmultipleelementsefficiently.3)Useinsert()toaddanelementataspeci

TocreateaPythonlist,usesquarebrackets[]andseparateitemswithcommas.1)Listsaredynamicandcanholdmixeddatatypes.2)Useappend(),remove(),andslicingformanipulation.3)Listcomprehensionsareefficientforcreatinglists.4)Becautiouswithlistreferences;usecopy()orsl

In the fields of finance, scientific research, medical care and AI, it is crucial to efficiently store and process numerical data. 1) In finance, using memory mapped files and NumPy libraries can significantly improve data processing speed. 2) In the field of scientific research, HDF5 files are optimized for data storage and retrieval. 3) In medical care, database optimization technologies such as indexing and partitioning improve data query performance. 4) In AI, data sharding and distributed training accelerate model training. System performance and scalability can be significantly improved by choosing the right tools and technologies and weighing trade-offs between storage and processing speeds.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

SublimeText3 Mac version
God-level code editing software (SublimeText3)

SublimeText3 Linux new version
SublimeText3 Linux latest version

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft
