


機械読み取り可能ゾーン (MRZ) は、現代のパスポート、ビザ、ID カードに採用されている重要な機能です。これには、名前、性別、国コード、文書番号など、文書所有者に関する重要な情報が含まれています。 MRZ の認識は、国境管理、空港のセキュリティ、ホテルのチェックイン プロセスにおいて重要な役割を果たします。このチュートリアルでは、Dynamsoft Capture Vision SDK を利用して、Windows、Linux、および macOS に MRZ 認識を実装する方法を示します。プラットフォーム。このガイドでは、SDK の強力な機能を活用し、クロスプラットフォームの MRZ 検出をシームレスかつ効率的に行うための段階的なアプローチを提供します。
macOS での Python MRZ 認識デモ
前提条件
Dynamsoft Capture Vision トライアル ライセンス: Dynamsoft Capture Vision SDK の 30 日間のトライアル ライセンス キーを取得します。
-
Python パッケージ: 次のコマンドを使用して、必要な Python パッケージをインストールします。
pip install dynamsoft-capture-vision-bundle opencv-python
これらのパッケージは何のためにありますか?
- dynamsoft-capture-vision-bundle は、Python 用 Dynamsoft Capture Vision SDK です。
- opencv-python はカメラ フレームをキャプチャし、処理された画像結果を表示します。
Dynamsoft Python Capture Vision サンプルの開始
公式 MRZ スキャナーのサンプルは、Dynamsoft Capture Vision SDK を使用して簡単な Python ベースの MRZ リーダーを短時間で作成する方法を示しています。
ソース コードを見て、その機能を分析してみましょう:
import sys from dynamsoft_capture_vision_bundle import * import os class MRZResult: def __init__(self, item: ParsedResultItem): self.doc_type = item.get_code_type() self.raw_text=[] self.doc_id = None self.surname = None self.given_name = None self.nationality = None self.issuer = None self.gender = None self.date_of_birth = None self.date_of_expiry = None if self.doc_type == "MRTD_TD3_PASSPORT": if item.get_field_value("passportNumber") != None and item.get_field_validation_status("passportNumber") != EnumValidationStatus.VS_FAILED: self.doc_id = item.get_field_value("passportNumber") elif item.get_field_value("documentNumber") != None and item.get_field_validation_status("documentNumber") != EnumValidationStatus.VS_FAILED: self.doc_id = item.get_field_value("documentNumber") line = item.get_field_value("line1") if line is not None: if item.get_field_validation_status("line1") == EnumValidationStatus.VS_FAILED: line += ", Validation Failed" self.raw_text.append(line) line = item.get_field_value("line2") if line is not None: if item.get_field_validation_status("line2") == EnumValidationStatus.VS_FAILED: line += ", Validation Failed" self.raw_text.append(line) line = item.get_field_value("line3") if line is not None: if item.get_field_validation_status("line3") == EnumValidationStatus.VS_FAILED: line += ", Validation Failed" self.raw_text.append(line) if item.get_field_value("nationality") != None and item.get_field_validation_status("nationality") != EnumValidationStatus.VS_FAILED: self.nationality = item.get_field_value("nationality") if item.get_field_value("issuingState") != None and item.get_field_validation_status("issuingState") != EnumValidationStatus.VS_FAILED: self.issuer = item.get_field_value("issuingState") if item.get_field_value("dateOfBirth") != None and item.get_field_validation_status("dateOfBirth") != EnumValidationStatus.VS_FAILED: self.date_of_birth = item.get_field_value("dateOfBirth") if item.get_field_value("dateOfExpiry") != None and item.get_field_validation_status("dateOfExpiry") != EnumValidationStatus.VS_FAILED: self.date_of_expiry = item.get_field_value("dateOfExpiry") if item.get_field_value("sex") != None and item.get_field_validation_status("sex") != EnumValidationStatus.VS_FAILED: self.gender = item.get_field_value("sex") if item.get_field_value("primaryIdentifier") != None and item.get_field_validation_status("primaryIdentifier") != EnumValidationStatus.VS_FAILED: self.surname = item.get_field_value("primaryIdentifier") if item.get_field_value("secondaryIdentifier") != None and item.get_field_validation_status("secondaryIdentifier") != EnumValidationStatus.VS_FAILED: self.given_name = item.get_field_value("secondaryIdentifier") def to_string(self): msg = (f"Raw Text:\n") for index, line in enumerate(self.raw_text): msg += (f"\tLine {index + 1}: {line}\n") msg+=(f"Parsed Information:\n" f"\tDocumentType: {self.doc_type or ''}\n" f"\tDocumentID: {self.doc_id or ''}\n" f"\tSurname: {self.surname or ''}\n" f"\tGivenName: {self.given_name or ''}\n" f"\tNationality: {self.nationality or ''}\n" f"\tIssuingCountryorOrganization: {self.issuer or ''}\n" f"\tGender: {self.gender or ''}\n" f"\tDateofBirth(YYMMDD): {self.date_of_birth or ''}\n" f"\tExpirationDate(YYMMDD): {self.date_of_expiry or ''}\n") return msg def print_results(result: ParsedResult) -> None: tag = result.get_original_image_tag() if isinstance(tag, FileImageTag): print("File:", tag.get_file_path()) if result.get_error_code() != EnumErrorCode.EC_OK: print("Error:", result.get_error_string()) else: items = result.get_items() print("Parsed", len(items), "MRZ Zones.") for item in items: mrz_result = MRZResult(item) print(mrz_result.to_string()) if __name__ == '__main__': print("**********************************************************") print("Welcome to Dynamsoft Capture Vision - MRZ Sample") print("**********************************************************") error_code, error_message = LicenseManager.init_license("LICENSE-KEY") if error_code != EnumErrorCode.EC_OK and error_code != EnumErrorCode.EC_LICENSE_CACHE_USED: print("License initialization failed: ErrorCode:", error_code, ", ErrorString:", error_message) else: cvr_instance = CaptureVisionRouter() while (True): image_path = input( ">> Input your image full path:\n" ">> 'Enter' for sample image or 'Q'/'q' to quit\n" ).strip('\'"') if image_path.lower() == "q": sys.exit(0) if image_path == "": image_path = "../Images/passport-sample.jpg" if not os.path.exists(image_path): print("The image path does not exist.") continue result = cvr_instance.capture(image_path, "ReadPassportAndId") if result.get_error_code() != EnumErrorCode.EC_OK: print("Error:", result.get_error_code(), result.get_error_string()) else: parsed_result = result.get_parsed_result() if parsed_result is None or len(parsed_result.get_items()) == 0: print("No parsed results.") else: print_results(parsed_result) input("Press Enter to quit...")
説明
- LicenseManager.init_license メソッドは、有効なライセンス キーを使用して Dynamsoft Capture Vision SDK を初期化します。
- CaptureVisionRouter クラスは、画像処理タスクを管理し、さまざまな画像処理モジュールを調整します。そのキャプチャ メソッドは入力画像を処理し、結果を返します。
- ReadPassportAndId は、処理モードを指定する組み込みテンプレートです。 SDK は、MRZ 認識、文書端検出、バーコード検出などのさまざまな処理モードをサポートしています。
- get_parsed_result メソッドは、MRZ の認識結果を辞書として取得します。 MRZResult クラスは、関連する MRZ 情報を抽出してラップします。このクラスはさまざまなアプリケーション間で再利用できるため、utils.py ファイルに移動することをお勧めします。
次のセクションでは、OpenCV を使用して MRZ 認識結果を視覚化し、検出された MRZ ゾーンをパスポート画像上に表示します。
Visualizing Machine Readable Zone Location in a Passport Image
In the code above, result is an instance of the CapturedResult class. Calling its get_recognized_text_lines_result() method retrieves a list of TextLineResultItem objects. Each TextLineResultItem object contains the coordinates of the detected text line. Use the following code snippet to extract the coordinates and draw contours on the passport image:
cv_image = cv2.imread(image_path) line_result = result.get_recognized_text_lines_result() items = line_result.get_items() for item in items: location = item.get_location() x1 = location.points[0].x y1 = location.points[0].y x2 = location.points[1].x y2 = location.points[1].y x3 = location.points[2].x y3 = location.points[2].y x4 = location.points[3].x y4 = location.points[3].y del location cv2.drawContours( cv_image, [np.intp([(x1, y1), (x2, y2), (x3, y3), (x4, y4)])], 0, (0, 255, 0), 2) cv2.imshow( "Original Image with Detected MRZ Zone", cv_image) cv2.waitKey(0) cv2.destroyAllWindows()
Scanning and Recognizing MRZ in Real-time via Webcam
Scanning and recognizing MRZ in real-time via webcam requires capturing a continuous image stream. We can use the OpenCV library to capture frames from the webcam and process them with the Dynamsoft Capture Vision SDK. The following code snippet demonstrates how to implement real-time MRZ recognition using a webcam:
from dynamsoft_capture_vision_bundle import * import cv2 import numpy as np import queue from utils import * class FrameFetcher(ImageSourceAdapter): def has_next_image_to_fetch(self) -> bool: return True def add_frame(self, imageData): self.add_image_to_buffer(imageData) class MyCapturedResultReceiver(CapturedResultReceiver): def __init__(self, result_queue): super().__init__() self.result_queue = result_queue def on_captured_result_received(self, captured_result): self.result_queue.put(captured_result) if __name__ == '__main__': errorCode, errorMsg = LicenseManager.init_license( "LICENSE-KEY") if errorCode != EnumErrorCode.EC_OK and errorCode != EnumErrorCode.EC_LICENSE_CACHE_USED: print("License initialization failed: ErrorCode:", errorCode, ", ErrorString:", errorMsg) else: vc = cv2.VideoCapture(0) if not vc.isOpened(): print("Error: Camera is not opened!") exit(1) cvr = CaptureVisionRouter() fetcher = FrameFetcher() cvr.set_input(fetcher) # Create a thread-safe queue to store captured items result_queue = queue.Queue() receiver = MyCapturedResultReceiver(result_queue) cvr.add_result_receiver(receiver) errorCode, errorMsg = cvr.start_capturing("ReadPassportAndId") if errorCode != EnumErrorCode.EC_OK: print("error:", errorMsg) while True: ret, frame = vc.read() if not ret: print("Error: Cannot read frame!") break fetcher.add_frame(convertMat2ImageData(frame)) if not result_queue.empty(): captured_result = result_queue.get_nowait() items = captured_result.get_items() for item in items: if item.get_type() == EnumCapturedResultItemType.CRIT_TEXT_LINE: text = item.get_text() line_results = text.split('\n') location = item.get_location() x1 = location.points[0].x y1 = location.points[0].y x2 = location.points[1].x y2 = location.points[1].y x3 = location.points[2].x y3 = location.points[2].y x4 = location.points[3].x y4 = location.points[3].y cv2.drawContours( frame, [np.intp([(x1, y1), (x2, y2), (x3, y3), (x4, y4)])], 0, (0, 255, 0), 2) delta = y3 - y1 for line_result in line_results: cv2.putText( frame, line_result, (x1, y1), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 1, cv2.LINE_AA) y1 += delta del location elif item.get_type() == EnumCapturedResultItemType.CRIT_PARSED_RESULT: mrz_result = MRZResult(item) print(mrz_result.to_string()) if cv2.waitKey(1) & 0xFF == ord('q'): break cv2.imshow('frame', frame) cvr.stop_capturing() vc.release() cv2.destroyAllWindows()
Explanation
- The FrameFetcher class implements the ImageSourceAdapter interface to feed frame data into the built-in buffer.
- The MyCapturedResultReceiver class implements the CapturedResultReceiver interface. The on_captured_result_received method runs on a native C++ worker thread, sending CapturedResult objects to the main thread where they are stored in a thread-safe queue for further use.
- A CapturedResult contains several CapturedResultItem objects. The CRIT_TEXT_LINE type represents recognized text lines, while the CRIT_PARSED_RESULT type represents parsed MRZ data.
Running the Real-time MRZ Recognition Demo on Windows
Source Code
https://github.com/yushulx/python-mrz-scanner-sdk/tree/main/examples/official
The above is the detailed content of How to Implement Machine Readable Zone (MRZ) Recognition in Python. For more information, please follow other related articles on the PHP Chinese website!

This tutorial demonstrates how to use Python to process the statistical concept of Zipf's law and demonstrates the efficiency of Python's reading and sorting large text files when processing the law. You may be wondering what the term Zipf distribution means. To understand this term, we first need to define Zipf's law. Don't worry, I'll try to simplify the instructions. Zipf's Law Zipf's law simply means: in a large natural language corpus, the most frequently occurring words appear about twice as frequently as the second frequent words, three times as the third frequent words, four times as the fourth frequent words, and so on. Let's look at an example. If you look at the Brown corpus in American English, you will notice that the most frequent word is "th

This article explains how to use Beautiful Soup, a Python library, to parse HTML. It details common methods like find(), find_all(), select(), and get_text() for data extraction, handling of diverse HTML structures and errors, and alternatives (Sel

Python's statistics module provides powerful data statistical analysis capabilities to help us quickly understand the overall characteristics of data, such as biostatistics and business analysis. Instead of looking at data points one by one, just look at statistics such as mean or variance to discover trends and features in the original data that may be ignored, and compare large datasets more easily and effectively. This tutorial will explain how to calculate the mean and measure the degree of dispersion of the dataset. Unless otherwise stated, all functions in this module support the calculation of the mean() function instead of simply summing the average. Floating point numbers can also be used. import random import statistics from fracti

This article compares TensorFlow and PyTorch for deep learning. It details the steps involved: data preparation, model building, training, evaluation, and deployment. Key differences between the frameworks, particularly regarding computational grap

Serialization and deserialization of Python objects are key aspects of any non-trivial program. If you save something to a Python file, you do object serialization and deserialization if you read the configuration file, or if you respond to an HTTP request. In a sense, serialization and deserialization are the most boring things in the world. Who cares about all these formats and protocols? You want to persist or stream some Python objects and retrieve them in full at a later time. This is a great way to see the world on a conceptual level. However, on a practical level, the serialization scheme, format or protocol you choose may determine the speed, security, freedom of maintenance status, and other aspects of the program

The article discusses popular Python libraries like NumPy, Pandas, Matplotlib, Scikit-learn, TensorFlow, Django, Flask, and Requests, detailing their uses in scientific computing, data analysis, visualization, machine learning, web development, and H

This tutorial builds upon the previous introduction to Beautiful Soup, focusing on DOM manipulation beyond simple tree navigation. We'll explore efficient search methods and techniques for modifying HTML structure. One common DOM search method is ex

This article guides Python developers on building command-line interfaces (CLIs). It details using libraries like typer, click, and argparse, emphasizing input/output handling, and promoting user-friendly design patterns for improved CLI usability.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

SublimeText3 Linux new version
SublimeText3 Linux latest version

WebStorm Mac version
Useful JavaScript development tools

Dreamweaver CS6
Visual web development tools

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

SublimeText3 Chinese version
Chinese version, very easy to use
