Home >Web Front-end >JS Tutorial >Microsoft Excel New short Code

Microsoft Excel New short Code

DDD
DDDOriginal
2024-10-08 18:19:02255browse

Microsoft Excel New short Code

VLOOKUP: =VLOOKUP(lookup_value, table_array, col_index_num, [range_lookup])
INDEX/MATCH: =INDEX(range, MATCH(lookup_value, lookup_array, [match_type])
PivotTable: =SUMIFS(sum_range, criteria_range, criteria)
Conditional Formatting: =A1>average(A:A)
Chart creation: =SERIES(name, categories, values)
Data Analytics/Science (Python):
Dataframe creation: df = pd.DataFrame({'column1': [1, 2, 3], 'column2': [4, 5, 6]})
Data merging: pd.merge(df1, df2, on='common_column')
GroupBy: df.groupby('column').sum()
Data visualization: plt.plot(df['column'])
Machine Learning: from sklearn.linear_model import LinearRegression; model = LinearRegression()
SQL:
Data insertion: INSERT INTO table (column1, column2) VALUES ('value1', 'value2');
Data update: UPDATE table SET column = 'new_value' WHERE condition;
Data deletion: DELETE FROM table WHERE condition;
Table creation: CREATE TABLE table (column1 data_type, column2 data_type);
Index creation: CREATE INDEX index_name ON table (column);
R:
Dataframe creation: df <- data.frame(column1 = c(1, 2, 3), column2 = c(4, 5, 6))
Data merging: merge(df1, df2, by = 'common_column')
GroupBy: aggregate(df$column, by = list(df$group), FUN = sum)
Data visualization: ggplot(df, aes(x = column)) + geom_bar()
Machine Learning: library(caret); model <- train(column ~ ., data = df)
Regular Expressions (regex):
Match email: \b[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+.[a-zA-Z]{2,}\b
Match phone number: \d{3}[-.]?\d{3}[-.]?\d{4}
Match date (YYYY-MM-DD): \d{4}[-.]\d{2}[-.]\d{2}

The above is the detailed content of Microsoft Excel New short Code. For more information, please follow other related articles on the PHP Chinese website!

Statement:
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn