Home >Web Front-end >JS Tutorial >Microsoft Excel New short Code
VLOOKUP: =VLOOKUP(lookup_value, table_array, col_index_num, [range_lookup]) INDEX/MATCH: =INDEX(range, MATCH(lookup_value, lookup_array, [match_type]) PivotTable: =SUMIFS(sum_range, criteria_range, criteria) Conditional Formatting: =A1>average(A:A) Chart creation: =SERIES(name, categories, values) Data Analytics/Science (Python): Dataframe creation: df = pd.DataFrame({'column1': [1, 2, 3], 'column2': [4, 5, 6]}) Data merging: pd.merge(df1, df2, on='common_column') GroupBy: df.groupby('column').sum() Data visualization: plt.plot(df['column']) Machine Learning: from sklearn.linear_model import LinearRegression; model = LinearRegression() SQL: Data insertion: INSERT INTO table (column1, column2) VALUES ('value1', 'value2'); Data update: UPDATE table SET column = 'new_value' WHERE condition; Data deletion: DELETE FROM table WHERE condition; Table creation: CREATE TABLE table (column1 data_type, column2 data_type); Index creation: CREATE INDEX index_name ON table (column); R: Dataframe creation: df <- data.frame(column1 = c(1, 2, 3), column2 = c(4, 5, 6)) Data merging: merge(df1, df2, by = 'common_column') GroupBy: aggregate(df$column, by = list(df$group), FUN = sum) Data visualization: ggplot(df, aes(x = column)) + geom_bar() Machine Learning: library(caret); model <- train(column ~ ., data = df) Regular Expressions (regex): Match email: \b[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+.[a-zA-Z]{2,}\b Match phone number: \d{3}[-.]?\d{3}[-.]?\d{4} Match date (YYYY-MM-DD): \d{4}[-.]\d{2}[-.]\d{2}
The above is the detailed content of Microsoft Excel New short Code. For more information, please follow other related articles on the PHP Chinese website!