


The ETL (Extract, Transform, Load) process is fundamental for managing data efficiently, especially in applications that require quick decision-making based on real-time data. In this article, we will explore the ETL process using a practical example involving real-time cryptocurrency trades from the Binance API. The Python code provided illustrates how to extract trade data, transform it into a usable format, load it into an SQLite database, and visualize the data with real-time plotting.
Sample ETL Project : https://github.com/vcse59/FeatureEngineering/tree/main/Real-Time-CryptoCurrency-Price-Tracker
1. Extract
The first step of the ETL process is Extraction, which involves gathering data from various sources. In this case, data is extracted through a WebSocket connection to the Binance Testnet API. This connection allows for real-time streaming of BTC/USDT trades.
Here's how the extraction is implemented in the code:
with websockets.connect(url) as ws: response = await ws.recv() trade_data = json.loads(response)
Each message received contains essential trade data, including the price, quantity, and timestamp, which is formatted as JSON.
2. Transform
Once the data is extracted, it undergoes the Transformation process. This step cleans and structures the data to make it more useful. In our example, the transformation includes converting the timestamp from milliseconds to a readable format and organizing the data into appropriate types for further processing.
price = float(trade_data['p']) quantity = float(trade_data['q']) timestamp = int(trade_data['T']) trade_time = datetime.fromtimestamp(timestamp / 1000.0)
This ensures that the price and quantity are stored as floats, and the timestamp is converted to a datetime object for easier manipulation and analysis.
3. Load
The final step is Loading, where the transformed data is stored in a target database. In our code, the SQLite database serves as the storage medium for the trade data.
The loading process is managed by the following function:
def save_trade_to_db(price, quantity, timestamp): conn = sqlite3.connect('trades.db') cursor = conn.cursor() # Create a table if it doesn't exist cursor.execute(''' CREATE TABLE IF NOT EXISTS trades ( id INTEGER PRIMARY KEY AUTOINCREMENT, price REAL, quantity REAL, timestamp TEXT ) ''') # Insert the trade data cursor.execute(''' INSERT INTO trades (price, quantity, timestamp) VALUES (?, ?, ?) ''', (price, quantity, trade_time)) conn.commit() conn.close()
This function connects to the SQLite database, creates a table if it doesn't exist, and inserts the trade data.
4. Visualize
In addition to storing data, it is essential to visualize it for better understanding and decision-making. The provided code includes a function to plot the trades in real-time:
def plot_trades(): if len(trades) > 0: timestamps, prices, quantities = zip(*trades) plt.subplot(2, 1, 1) plt.cla() # Clear the previous plot for real-time updates plt.plot(timestamps, prices, label='Price', color='blue') plt.ylabel('Price (USDT)') plt.legend() plt.title('Real-Time BTC/USDT Prices') plt.xticks(rotation=45) plt.subplot(2, 1, 2) plt.cla() # Clear the previous plot for real-time updates plt.plot(timestamps, quantities, label='Quantity', color='orange') plt.ylabel('Quantity') plt.xlabel('Time') plt.legend() plt.xticks(rotation=45) plt.tight_layout() # Adjust layout for better spacing plt.pause(0.1) # Pause to update the plot
This function generates two subplots: one for price and another for quantity. It uses the matplotlib library to visualize the data dynamically, allowing users to observe market trends in real-time.
Conclusion
This example highlights the ETL process, demonstrating how data can be extracted from a WebSocket API, transformed for analysis, loaded into a database, and visualized for immediate feedback. This framework is crucial for building applications that need to make informed decisions based on real-time data, such as trading platforms and market analysis tools.
The above is the detailed content of Understanding the ETL Process with Real-Time Data: Extraction, Transformation, Loading, and Visualization. For more information, please follow other related articles on the PHP Chinese website!

Pythonlistsareimplementedasdynamicarrays,notlinkedlists.1)Theyarestoredincontiguousmemoryblocks,whichmayrequirereallocationwhenappendingitems,impactingperformance.2)Linkedlistswouldofferefficientinsertions/deletionsbutslowerindexedaccess,leadingPytho

Pythonoffersfourmainmethodstoremoveelementsfromalist:1)remove(value)removesthefirstoccurrenceofavalue,2)pop(index)removesandreturnsanelementataspecifiedindex,3)delstatementremoveselementsbyindexorslice,and4)clear()removesallitemsfromthelist.Eachmetho

Toresolvea"Permissiondenied"errorwhenrunningascript,followthesesteps:1)Checkandadjustthescript'spermissionsusingchmod xmyscript.shtomakeitexecutable.2)Ensurethescriptislocatedinadirectorywhereyouhavewritepermissions,suchasyourhomedirectory.

ArraysarecrucialinPythonimageprocessingastheyenableefficientmanipulationandanalysisofimagedata.1)ImagesareconvertedtoNumPyarrays,withgrayscaleimagesas2Darraysandcolorimagesas3Darrays.2)Arraysallowforvectorizedoperations,enablingfastadjustmentslikebri

Arraysaresignificantlyfasterthanlistsforoperationsbenefitingfromdirectmemoryaccessandfixed-sizestructures.1)Accessingelements:Arraysprovideconstant-timeaccessduetocontiguousmemorystorage.2)Iteration:Arraysleveragecachelocalityforfasteriteration.3)Mem

Arraysarebetterforelement-wiseoperationsduetofasteraccessandoptimizedimplementations.1)Arrayshavecontiguousmemoryfordirectaccess,enhancingperformance.2)Listsareflexiblebutslowerduetopotentialdynamicresizing.3)Forlargedatasets,arrays,especiallywithlib

Mathematical operations of the entire array in NumPy can be efficiently implemented through vectorized operations. 1) Use simple operators such as addition (arr 2) to perform operations on arrays. 2) NumPy uses the underlying C language library, which improves the computing speed. 3) You can perform complex operations such as multiplication, division, and exponents. 4) Pay attention to broadcast operations to ensure that the array shape is compatible. 5) Using NumPy functions such as np.sum() can significantly improve performance.

In Python, there are two main methods for inserting elements into a list: 1) Using the insert(index, value) method, you can insert elements at the specified index, but inserting at the beginning of a large list is inefficient; 2) Using the append(value) method, add elements at the end of the list, which is highly efficient. For large lists, it is recommended to use append() or consider using deque or NumPy arrays to optimize performance.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Zend Studio 13.0.1
Powerful PHP integrated development environment

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

Dreamweaver CS6
Visual web development tools

Atom editor mac version download
The most popular open source editor

SublimeText3 Mac version
God-level code editing software (SublimeText3)
