Decorators in Python are a powerful tool that allow you to modify the behavior of functions or methods without changing their source code. They provide a clean way to add functionality and are widely used for logging, enforcing rules, and optimizing performance.
In this post, we'll look at six common Python decorators with simple examples.
1 - @staticmethod: Define Static Methods
The @staticmethod decorator creates methods that don’t access instance (self) or class (cls) data. It behaves like a regular function but can be called from the class or an instance.
Example:
class MyClass: @staticmethod def greet(): return "Hello from static method!"
2 - @classmethod: Define Class Methods
The @classmethod decorator lets you define methods that take the class (cls) as the first argument. This is useful for factory methods or altering class state.
Example:
class MyClass: count = 0 @classmethod def increment_count(cls): cls.count += 1
3 - @property: Define Read-Only Attributes
The @property decorator allows methods to be accessed like attributes. It’s useful when you want to control access to a property without exposing the internal implementation.
Example:
class Circle: def __init__(self, radius): self._radius = radius @property def area(self): return 3.14 * self._radius ** 2
4 - @functools.lru_cache: Cache Expensive Function Results
The @lru_cache decorator (from functools) caches the results of function calls to avoid recomputation. This can significantly improve performance for expensive or frequently called functions.
Example:
from functools import lru_cache @lru_cache(maxsize=32) def expensive_computation(x): return x ** 2
5 - @functools.wraps: Preserve Metadata in Custom Decorators
When writing custom decorators, the @wraps decorator preserves the metadata (name, docstring) of the original function, ensuring that introspection tools still work.
Example:
from functools import wraps def my_decorator(func): @wraps(func) def wrapper(*args, **kwargs): return func(*args, **kwargs) return wrapper
6 - @dataclass: Simplify Class Definitions
The @dataclass decorator (from the dataclasses module) automatically generates methods like init() and repr() for classes. It’s perfect for data-holding classes.
Example:
from dataclasses import dataclass @dataclass class Point: x: int y: int
Conclusion
Python decorators like @staticmethod, @classmethod, @property, @lru_cache, @wraps, and @dataclass help write cleaner and more efficient code by wrapping functionality around methods and functions. They are versatile tools that can simplify many programming tasks.
Sources
Python Decorator Definition
@staticmethod
@classmethod
@property
@functools.lru_cache
@functools.wraps
@dataclass
The above is the detailed content of Python Decorators: Simplifying Code. For more information, please follow other related articles on the PHP Chinese website!

SlicingaPythonlistisdoneusingthesyntaxlist[start:stop:step].Here'showitworks:1)Startistheindexofthefirstelementtoinclude.2)Stopistheindexofthefirstelementtoexclude.3)Stepistheincrementbetweenelements.It'susefulforextractingportionsoflistsandcanuseneg

NumPyallowsforvariousoperationsonarrays:1)Basicarithmeticlikeaddition,subtraction,multiplication,anddivision;2)Advancedoperationssuchasmatrixmultiplication;3)Element-wiseoperationswithoutexplicitloops;4)Arrayindexingandslicingfordatamanipulation;5)Ag

ArraysinPython,particularlythroughNumPyandPandas,areessentialfordataanalysis,offeringspeedandefficiency.1)NumPyarraysenableefficienthandlingoflargedatasetsandcomplexoperationslikemovingaverages.2)PandasextendsNumPy'scapabilitieswithDataFramesforstruc

ListsandNumPyarraysinPythonhavedifferentmemoryfootprints:listsaremoreflexiblebutlessmemory-efficient,whileNumPyarraysareoptimizedfornumericaldata.1)Listsstorereferencestoobjects,withoverheadaround64byteson64-bitsystems.2)NumPyarraysstoredatacontiguou

ToensurePythonscriptsbehavecorrectlyacrossdevelopment,staging,andproduction,usethesestrategies:1)Environmentvariablesforsimplesettings,2)Configurationfilesforcomplexsetups,and3)Dynamicloadingforadaptability.Eachmethodoffersuniquebenefitsandrequiresca

The basic syntax for Python list slicing is list[start:stop:step]. 1.start is the first element index included, 2.stop is the first element index excluded, and 3.step determines the step size between elements. Slices are not only used to extract data, but also to modify and invert lists.

Listsoutperformarraysin:1)dynamicsizingandfrequentinsertions/deletions,2)storingheterogeneousdata,and3)memoryefficiencyforsparsedata,butmayhaveslightperformancecostsincertainoperations.

ToconvertaPythonarraytoalist,usethelist()constructororageneratorexpression.1)Importthearraymoduleandcreateanarray.2)Uselist(arr)or[xforxinarr]toconvertittoalist,consideringperformanceandmemoryefficiencyforlargedatasets.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

Dreamweaver CS6
Visual web development tools

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.
