Introduction
This lab aims to test your understanding of Go's time and duration support.
Time
The code below contains examples of how to work with time and duration in Go. However, some parts of the code are missing. Your task is to complete the code to make it work as expected.
- Basic knowledge of Go programming language.
- Familiarity with Go's time and duration support.
$ go run time.go 2012-10-31 15:50:13.793654 +0000 UTC 2009-11-17 20:34:58.651387237 +0000 UTC 2009 November 17 20 34 58 651387237 UTC Tuesday true false false 25891h15m15.142266763s 25891.25420618521 1.5534752523711128e+06 9.320851514226677e+07 93208515142266763 2012-10-31 15:50:13.793654 +0000 UTC 2006-12-05 01:19:43.509120474 +0000 UTC # Next we'll look at the related idea of time relative to # the Unix epoch.
There is the full code below:
// Go offers extensive support for times and durations; // here are some examples. package main import ( "fmt" "time" ) func main() { p := fmt.Println // We'll start by getting the current time. now := time.Now() p(now) // You can build a `time` struct by providing the // year, month, day, etc. Times are always associated // with a `Location`, i.e. time zone. then := time.Date( 2009, 11, 17, 20, 34, 58, 651387237, time.UTC) p(then) // You can extract the various components of the time // value as expected. p(then.Year()) p(then.Month()) p(then.Day()) p(then.Hour()) p(then.Minute()) p(then.Second()) p(then.Nanosecond()) p(then.Location()) // The Monday-Sunday `Weekday` is also available. p(then.Weekday()) // These methods compare two times, testing if the // first occurs before, after, or at the same time // as the second, respectively. p(then.Before(now)) p(then.After(now)) p(then.Equal(now)) // The `Sub` methods returns a `Duration` representing // the interval between two times. diff := now.Sub(then) p(diff) // We can compute the length of the duration in // various units. p(diff.Hours()) p(diff.Minutes()) p(diff.Seconds()) p(diff.Nanoseconds()) // You can use `Add` to advance a time by a given // duration, or with a `-` to move backwards by a // duration. p(then.Add(diff)) p(then.Add(-diff)) }
Summary
This lab tested your ability to work with Go's time and duration support. You learned how to extract various components of a time value, compare two times, compute the length of a duration, and advance a time by a given duration.
? Practice Now: Go Time and Duration Exploration
Want to Learn More?
- ? Learn the latest Go Skill Trees
- ? Read More Go Tutorials
- ? Join our Discord or tweet us @WeAreLabEx
The above is the detailed content of Go Time and Duration | Programming Tutorials. For more information, please follow other related articles on the PHP Chinese website!

WhentestingGocodewithinitfunctions,useexplicitsetupfunctionsorseparatetestfilestoavoiddependencyoninitfunctionsideeffects.1)Useexplicitsetupfunctionstocontrolglobalvariableinitialization.2)Createseparatetestfilestobypassinitfunctionsandsetupthetesten

Go'serrorhandlingreturnserrorsasvalues,unlikeJavaandPythonwhichuseexceptions.1)Go'smethodensuresexpliciterrorhandling,promotingrobustcodebutincreasingverbosity.2)JavaandPython'sexceptionsallowforcleanercodebutcanleadtooverlookederrorsifnotmanagedcare

AneffectiveinterfaceinGoisminimal,clear,andpromotesloosecoupling.1)Minimizetheinterfaceforflexibilityandeaseofimplementation.2)Useinterfacesforabstractiontoswapimplementationswithoutchangingcallingcode.3)Designfortestabilitybyusinginterfacestomockdep

Centralized error handling can improve the readability and maintainability of code in Go language. Its implementation methods and advantages include: 1. Separate error handling logic from business logic and simplify code. 2. Ensure the consistency of error handling by centrally handling. 3. Use defer and recover to capture and process panics to enhance program robustness.

InGo,alternativestoinitfunctionsincludecustominitializationfunctionsandsingletons.1)Custominitializationfunctionsallowexplicitcontroloverwheninitializationoccurs,usefulfordelayedorconditionalsetups.2)Singletonsensureone-timeinitializationinconcurrent

Gohandlesinterfacesandtypeassertionseffectively,enhancingcodeflexibilityandrobustness.1)Typeassertionsallowruntimetypechecking,asseenwiththeShapeinterfaceandCircletype.2)Typeswitcheshandlemultipletypesefficiently,usefulforvariousshapesimplementingthe

Go language error handling becomes more flexible and readable through errors.Is and errors.As functions. 1.errors.Is is used to check whether the error is the same as the specified error and is suitable for the processing of the error chain. 2.errors.As can not only check the error type, but also convert the error to a specific type, which is convenient for extracting error information. Using these functions can simplify error handling logic, but pay attention to the correct delivery of error chains and avoid excessive dependence to prevent code complexity.

TomakeGoapplicationsrunfasterandmoreefficiently,useprofilingtools,leverageconcurrency,andmanagememoryeffectively.1)UsepprofforCPUandmemoryprofilingtoidentifybottlenecks.2)Utilizegoroutinesandchannelstoparallelizetasksandimproveperformance.3)Implement


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Dreamweaver CS6
Visual web development tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Linux new version
SublimeText3 Linux latest version

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

SublimeText3 Chinese version
Chinese version, very easy to use
