search
HomeBackend DevelopmentPython Tutorialxample of computer vison technical test - Python / c++

To install opencv in python

pip install opencv-python

To install opencv in c++

git clone https://github.com/opencv/opencv.git
mkdir -p build && cd build
cmake ../opencv
make -j4
sudo make install

CmakeLists.txt

cmake_minimum_required(VERSION 3.0)
project(opencv_c__)

find_package(OpenCV REQUIRED)
include_directories(${OpenCV_INCLUDE_DIRS})
set(CMAKE_CXX_STANDARD 17)

add_executable(opencv_c__ main.cpp)
target_link_libraries(opencv_c__ ${OpenCV_LIBS})

I - Mouvement detection

xample of computer vison technical test - Python / c++

def ex1():
    cap = cv2.VideoCapture(0)

    object_detector = cv2.createBackgroundSubtractorMOG2()

    while True:
        ret, frame = cap.read()
        mask = object_detector.apply(frame)
        cv2.imshow('Video', mask)
        if cv2.waitKey(30) & 0xFF == 27:
            break

    cap.release()
    cv2.destroyAllWindows()
#include <iostream>

#include <opencv2>
#include <opencv2>
#include <opencv2>
#include <opencv2>
#include <opencv2>

int main() {
    cv::VideoCapture cap(0);
    cv::Ptr<:backgroundsubtractor> object_detector = cv::createBackgroundSubtractorMOG2();

    while (true) {
        cv::Mat frame;
        cap >> frame;
        cv::Mat mask;
        object_detector->apply(frame, mask);
        cv::imshow("Video", mask);
        if (cv::waitKey(30) == 27) {
            break;
        }
    }

    cap.release();
    cv::destroyAllWindows();
    return 0;
}
</:backgroundsubtractor></opencv2></opencv2></opencv2></opencv2></opencv2></iostream>

II - Blur faces

def ex2():
    cap = cv2.VideoCapture(0)

    while True:
        ret, frame = cap.read()
        face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
        gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
        faces = face_cascade.detectMultiScale(gray, 1.1, 4)
        for (x, y, w, h) in faces:
            roi = frame[y:y + h, x:x + w]
            roi = cv2.GaussianBlur(roi, (23, 23), 30)
            frame[y:y + h, x:x + w] = roi

        cv2.imshow("gray", gray)
        if cv2.waitKey(30) & 0xFF == 27:
            break

    cap.release()
    cv2.destroyAllWindows()
#include <iostream>

#include <opencv2>
#include <opencv2>
#include <opencv2>
#include <opencv2>
#include <opencv2>


int main() {
    cv::VideoCapture cap(0);

    while(true) {
        cv::Mat frame;
        cap >> frame;

        cv::CascadeClassifier face_cascade;
        face_cascade.load("haarcascade_frontalface_default.xml");

        std::vector<:rect> faces;
        face_cascade.detectMultiScale(frame, faces, 1.1, 3, 0, cv::Size(30, 30));

        for(int i = 0; i 



<h2>
  
  
  III - Tracing a movement
</h2>

<p><img src="/static/imghwm/default1.png" data-src="https://img.php.cn/upload/article/000/000/000/172592205430642.jpg?x-oss-process=image/resize,p_40" class="lazy" alt="xample of computer vison technical test - Python / c++"><br>
</p>

<pre class="brush:php;toolbar:false">def ex3():
    cap = cv2.VideoCapture(0)
    object_detector = cv2.createBackgroundSubtractorMOG2()

    last_coordinates = []

    while True:
        ret, frame = cap.read()
        mask = object_detector.apply(frame)
        contours, _ = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
        for contour in contours:
            if cv2.contourArea(contour) 





<pre class="brush:php;toolbar:false">#include <iostream>

#include <opencv2>
#include <opencv2>
#include <opencv2>
#include <opencv2>
#include <opencv2>


int main() {
    cv::VideoCapture cap(0);
    cv::Ptr<:backgroundsubtractor> object_detector = cv::createBackgroundSubtractorMOG2();

    std::vector<:rect> last_coordinates;

    while (true) {
        cv::Mat frame;
        cap >> frame;
        cv::Mat mask;
        object_detector->apply(frame, mask);
        std::vector<:vector>> contours;
        std::vector<:vec4i> hierarchy;
        cv::findContours(mask, contours, hierarchy, cv::RETR_TREE, cv::CHAIN_APPROX_SIMPLE);
        for (auto &contour : contours) {
            if (cv::contourArea(contour) 




          

            
        </:vec4i></:vector></:rect></:backgroundsubtractor></opencv2></opencv2></opencv2></opencv2></opencv2></iostream>

The above is the detailed content of xample of computer vison technical test - Python / c++. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
How to Use Python to Find the Zipf Distribution of a Text FileHow to Use Python to Find the Zipf Distribution of a Text FileMar 05, 2025 am 09:58 AM

This tutorial demonstrates how to use Python to process the statistical concept of Zipf's law and demonstrates the efficiency of Python's reading and sorting large text files when processing the law. You may be wondering what the term Zipf distribution means. To understand this term, we first need to define Zipf's law. Don't worry, I'll try to simplify the instructions. Zipf's Law Zipf's law simply means: in a large natural language corpus, the most frequently occurring words appear about twice as frequently as the second frequent words, three times as the third frequent words, four times as the fourth frequent words, and so on. Let's look at an example. If you look at the Brown corpus in American English, you will notice that the most frequent word is "th

How Do I Use Beautiful Soup to Parse HTML?How Do I Use Beautiful Soup to Parse HTML?Mar 10, 2025 pm 06:54 PM

This article explains how to use Beautiful Soup, a Python library, to parse HTML. It details common methods like find(), find_all(), select(), and get_text() for data extraction, handling of diverse HTML structures and errors, and alternatives (Sel

Image Filtering in PythonImage Filtering in PythonMar 03, 2025 am 09:44 AM

Dealing with noisy images is a common problem, especially with mobile phone or low-resolution camera photos. This tutorial explores image filtering techniques in Python using OpenCV to tackle this issue. Image Filtering: A Powerful Tool Image filter

How to Perform Deep Learning with TensorFlow or PyTorch?How to Perform Deep Learning with TensorFlow or PyTorch?Mar 10, 2025 pm 06:52 PM

This article compares TensorFlow and PyTorch for deep learning. It details the steps involved: data preparation, model building, training, evaluation, and deployment. Key differences between the frameworks, particularly regarding computational grap

Introduction to Parallel and Concurrent Programming in PythonIntroduction to Parallel and Concurrent Programming in PythonMar 03, 2025 am 10:32 AM

Python, a favorite for data science and processing, offers a rich ecosystem for high-performance computing. However, parallel programming in Python presents unique challenges. This tutorial explores these challenges, focusing on the Global Interprete

How to Implement Your Own Data Structure in PythonHow to Implement Your Own Data Structure in PythonMar 03, 2025 am 09:28 AM

This tutorial demonstrates creating a custom pipeline data structure in Python 3, leveraging classes and operator overloading for enhanced functionality. The pipeline's flexibility lies in its ability to apply a series of functions to a data set, ge

Serialization and Deserialization of Python Objects: Part 1Serialization and Deserialization of Python Objects: Part 1Mar 08, 2025 am 09:39 AM

Serialization and deserialization of Python objects are key aspects of any non-trivial program. If you save something to a Python file, you do object serialization and deserialization if you read the configuration file, or if you respond to an HTTP request. In a sense, serialization and deserialization are the most boring things in the world. Who cares about all these formats and protocols? You want to persist or stream some Python objects and retrieve them in full at a later time. This is a great way to see the world on a conceptual level. However, on a practical level, the serialization scheme, format or protocol you choose may determine the speed, security, freedom of maintenance status, and other aspects of the program

Mathematical Modules in Python: StatisticsMathematical Modules in Python: StatisticsMar 09, 2025 am 11:40 AM

Python's statistics module provides powerful data statistical analysis capabilities to help us quickly understand the overall characteristics of data, such as biostatistics and business analysis. Instead of looking at data points one by one, just look at statistics such as mean or variance to discover trends and features in the original data that may be ignored, and compare large datasets more easily and effectively. This tutorial will explain how to calculate the mean and measure the degree of dispersion of the dataset. Unless otherwise stated, all functions in this module support the calculation of the mean() function instead of simply summing the average. Floating point numbers can also be used. import random import statistics from fracti

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
Repo: How To Revive Teammates
4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: How To Get Giant Seeds
4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

PhpStorm Mac version

PhpStorm Mac version

The latest (2018.2.1) professional PHP integrated development tool

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

SublimeText3 English version

SublimeText3 English version

Recommended: Win version, supports code prompts!

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)