What is Sorting?
Sorting refers to the process of arranging data in a specific order, typically in ascending or descending order, based on a linear relationship among the data items.
Why Do We Need Sorting?
Sorting is crucial when working with structured data because it allows for efficient data retrieval, simplifies data analysis, and enhances overall data management.
Sorting Algorithms
This post covers the following sorting algorithms: Bubble Sort, Selection Sort, Insertion Sort, Merge Sort, and Quick Sort.
Bubble Sort
Bubble Sort repeatedly steps through the array, comparing adjacent elements and swapping them if they are in the wrong order. This process continues until the array is sorted, with larger elements "bubbling" to the end.
Algorithm
Step 1: Begin
Step 2: i = 0
Step 3: if i
Step 4: j = 0
Step 5: if j
Step 6: if array[j] > array[j + 1], goto Step 7; else goto Step 8
Step 7: Swap array[j] and array[j + 1]
Step 8: increment j; goto Step 5
Step 9: increment i; goto Step 3
Step 10: End
Code
def bubble_sort(arr): print("Array Before Sorting: ", end='') print(arr) for i in range(len(arr)): for j in range(len(arr)-i-1): if arr[j] > arr[j+1]: arr[j], arr[j+1] = arr[j+1], arr[j] print("Array After Sorting: ", end='') print(arr) # Main bubble_sort([7, 4, 1, 3, 4, 7, 87, 9, 6, 4, 2, 2, 3, 5, 6])
Time Complexity
Best Case : O(n)
Average Case : O(n^2)
Worst Case : O(n^2)
Selection Sort
Selection Sort finds the smallest value in the unsorted portion of the array and places it at the beginning of that portion.
Algorithm
Step 1 : Begin
Step 2 : i = 0
Step 3 : if i
Step 4 : minimum_value = i; j = i + 1
Step 5 : if j
Step 6 : if array[minimum_value] > array[j], goto Step 7; else goto Step 8
Step 7 : minimum_value = j
Step 8 : increment j; goto Step 5
Step 9 : swap array[minimum_value] and array[i]
Step 10 : increment i; goto Step 3
Step 11 : End
Code
def selection_sort(arr): print("Array Before Sorting: ", end='') print(arr) for i in range(len(arr) - 1): min_val = i for j in range(i + 1, len(arr)): if arr[j] <h4> Time Complexity </h4> <p>Best Case : O(n^2)<br> Average Case : O(n^2)<br> Worst Case : O(n^2) </p> <h3> Insertion Sort </h3> <p>Insertion Sort builds the sorted array one element at a time by taking each element from the unsorted portion and inserting it into the correct position in the sorted portion.</p> <h4> Algorithm </h4> <p>Step 1: Begin<br> Step 2: i = 1<br> Step 3: if i Step 4: key = arr[i]<br> Step 5: j = i - 1<br> Step 6: if j >= 0 and arr[j] > key, goto Step 7; else goto Step 10<br> Step 7: arr[j + 1] = arr[j]<br> Step 8: decrement j by 1<br> Step 9: goto Step 6<br> Step 10: arr[j + 1] = key<br> Step 11: increment i by 1; goto Step 3<br> Step 12: End</p> <h4> Code </h4> <pre class="brush:php;toolbar:false">def insertion_sort(arr): for i in range(1, len(arr)): key = arr[i] j = i - 1 while j >= 0 and arr[j] > key: arr[j + 1] = arr[j] j -= 1 arr[j + 1] = key # Main arr = [7, 4, 1, 3, 4, 7, 87, 9, 6, 4, 2, 2, 3, 5, 6] print("Array Before Sorting:", arr) insertion_sort(arr) print("Array After Sorting:", arr)
Time Complexity
Best Case : O(n)
Average Case : O(n^2)
Worst Case : O(n^2)
Merge Sort
Merge Sort is a divide-and-conquer algorithm that recursively divides the array into smaller sub-arrays, sorts them, and then merges them back together.
Algorithm
Merge Sort Algorithm
Step 1: Begin
Step 2: If length(array)
Step 3: mid_point = length(array) // 2
Step 4: left_half = array[:mid_point]
Step 5: right_half = array[mid_point:]
Step 6: sorted_left = merge_sort(left_half)
Step 7: sorted_right = merge_sort(right_half)
Step 8: return merge(sorted_left, sorted_right)
Step 9: End
Merge Function
Step 1: Begin
Step 2: sorted_merge = []
Step 3: l = 0, r = 0
Step 4: if l
Step 5: if left[l]
Step 6: add left[l] to sorted_merge; increment l by 1
Step 7: add right[r] to sorted_merge; increment r by 1
Step 8: goto Step 4
Step 9: if l
Step 10: add left[l] to sorted_merge; increment l by 1
Step 11: goto Step 9
Step 12: if r
Step 13: add right[r] to sorted_merge; increment r by 1
Step 14: goto Step 12
Step 15: Return sorted_merge
Step 16: End
Code
def merge(left, right): sorted_merge = [] l = r = 0 while l <h4> Time Complexity </h4> <p>Best Case : O(n log n)<br> Average Case : O(n log n)<br> Worst Case : O(n log n) </p> <h3> Quick Sort </h3> <p>Quick Sort is an efficient, in-place sorting algorithm that uses a divide-and-conquer approach. It selects a pivot element and partitions the array around the pivot so that elements less than the pivot are on its left and elements greater than the pivot are on its right. This process is then recursively applied to the sub-arrays.</p> <h4> Algorithm </h4> <p><strong>Quick Sort</strong><br><br> Step 1: Begin<br> Step 2: If low Step 3: pivot_index = partition(arr, low, high)<br> Step 4: quicksort(arr, low, pivot_index - 1)<br> Step 5: quicksort(arr, pivot_index + 1, high)<br> Step 6: End </p> <p><strong>Partition Function</strong><br><br> Step 1: Begin<br> Step 2: pivot = arr[high]<br> Step 3: left = low, right = high - 1<br> Step 4: if left Step 5: if arr[left] > pivot and arr[right] Step 6: if arr[left] Step 7: if arr[right] >= pivot, decrement right<br> Step 8: goto Step 4<br> Step 9: swap arr[left] and arr[high]<br> Step 10: return left<br> Step 11: End </p> <h4> Code </h4> <pre class="brush:php;toolbar:false">def partition(arr, low, high): pivot = arr[high] left = low right = high - 1 while left pivot and arr[right] = pivot: right -= 1 arr[left], arr[high] = arr[high], arr[left] return left def quicksort(arr, low, high): if low <h4> Time Complexity </h4> <p>Best Case : O(n log n)<br> Average Case : O(n log n)<br> Worst Case : O(n^2)</p>
The above is the detailed content of Sorting Algorithms in Python. For more information, please follow other related articles on the PHP Chinese website!

Python is an interpreted language, but it also includes the compilation process. 1) Python code is first compiled into bytecode. 2) Bytecode is interpreted and executed by Python virtual machine. 3) This hybrid mechanism makes Python both flexible and efficient, but not as fast as a fully compiled language.

Useaforloopwheniteratingoverasequenceorforaspecificnumberoftimes;useawhileloopwhencontinuinguntilaconditionismet.Forloopsareidealforknownsequences,whilewhileloopssuitsituationswithundeterminediterations.

Pythonloopscanleadtoerrorslikeinfiniteloops,modifyinglistsduringiteration,off-by-oneerrors,zero-indexingissues,andnestedloopinefficiencies.Toavoidthese:1)Use'i

Forloopsareadvantageousforknowniterationsandsequences,offeringsimplicityandreadability;whileloopsareidealfordynamicconditionsandunknowniterations,providingcontrolovertermination.1)Forloopsareperfectforiteratingoverlists,tuples,orstrings,directlyacces

Pythonusesahybridmodelofcompilationandinterpretation:1)ThePythoninterpretercompilessourcecodeintoplatform-independentbytecode.2)ThePythonVirtualMachine(PVM)thenexecutesthisbytecode,balancingeaseofusewithperformance.

Pythonisbothinterpretedandcompiled.1)It'scompiledtobytecodeforportabilityacrossplatforms.2)Thebytecodeistheninterpreted,allowingfordynamictypingandrapiddevelopment,thoughitmaybeslowerthanfullycompiledlanguages.

Forloopsareidealwhenyouknowthenumberofiterationsinadvance,whilewhileloopsarebetterforsituationswhereyouneedtoloopuntilaconditionismet.Forloopsaremoreefficientandreadable,suitableforiteratingoversequences,whereaswhileloopsoffermorecontrolandareusefulf

Forloopsareusedwhenthenumberofiterationsisknowninadvance,whilewhileloopsareusedwhentheiterationsdependonacondition.1)Forloopsareidealforiteratingoversequenceslikelistsorarrays.2)Whileloopsaresuitableforscenarioswheretheloopcontinuesuntilaspecificcond


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

WebStorm Mac version
Useful JavaScript development tools

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Atom editor mac version download
The most popular open source editor
