


In this article, we will learn how to create a custom agent that uses an open source llm (llama3.1) that runs locally on our PC. We will also use Ollama and LangChain.
Outline
- Install Ollama
- Pull model
- Serve model
- Create a new folder, open it with a code editor
- Create and activate Virtual environment
- Install langchain langchain-ollama
- Build Custom agent with open source model in Python
- Conclusion
Install Ollama
Follow the instructions based on your OS type in its GitHub README to install Ollama:
https://github.com/ollama/ollama
I am on a Linux-based PC, so I am going to run the following command in my terminal:
curl -fsSL https://ollama.com/install.sh | sh
Pull model
Fetch the available LLM model via the following command:
ollama pull llama3.1
This will download the default tagged version of the model. Typically, the default points to the latest, smallest sized-parameter model. In this case, it will be llama3.1:8b model.
To download another version of the model, you can go to: https://ollama.com/library/llama3.1 and select the version to install, and then run the ollama pull command with the model and its version number. Example: ollama pull llama3.1:70b
On Mac, the models will be downloaded to ~/.ollama/models
On Linux (or WSL), the models will be stored at /usr/share/ollama/.ollama/models
Serve model
Run the following command to start ollama without running the desktop application.
ollama serve
All models are automatically served on localhost:11434
Create a new folder, open it with a code editor
Create a new folder on your computer and then open it with a code editor like VS Code.
Create and activate Virtual environment
Open the terminal. Use the following command to create a virtual environment .venv and activate it:
python3 -m venv .venv
source .venv/bin/activate
Install langchain langchain-ollama
Run the following command to install langchain and langchain-ollama:
pip install -U langchain langchain-ollama
The above command will install or upgrade the LangChain and LangChain-Ollama packages in Python. The -U flag ensures that the latest versions of these packages are installed, replacing any older versions that may already be present.
Build Custom agent with open source model in Python
Create a Python file for example: main.py and add the following code:
from langchain_ollama import ChatOllama from langchain.agents import tool from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder from langchain.agents.format_scratchpad.openai_tools import ( format_to_openai_tool_messages, ) from langchain.agents import AgentExecutor from langchain.agents.output_parsers.openai_tools import OpenAIToolsAgentOutputParser llm = ChatOllama( model="llama3.1", temperature=0, verbose=True ) @tool def get_word_length(word: str) -> int: """Returns the length of a word.""" return len(word) tools = [get_word_length] prompt = ChatPromptTemplate.from_messages( [ ( "system", "You are very powerful assistant", ), ("user", "{input}"), MessagesPlaceholder(variable_name="agent_scratchpad"), ] ) llm_with_tools = llm.bind_tools(tools) agent = ( { "input": lambda x: x["input"], "agent_scratchpad": lambda x: format_to_openai_tool_messages( x["intermediate_steps"] ), } | prompt | llm_with_tools | OpenAIToolsAgentOutputParser() ) # Create an agent executor by passing in the agent and tools agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True) result = agent_executor.invoke({"input": "How many letters in the word educa"}) if result: print(f"[Output] --> {result['output']}") else: print('There are no result..')
The above code snippet sets up a LangChain agent using the ChatOllama model (llama3.1) to process user input and utilize a custom tool that calculates word length. It defines a prompt template for the agent, binds the tool to the language model, and constructs an agent that processes input and formats intermediate steps. Finally, it creates an AgentExecutor to invoke the agent with a specific input. We pass a simple question to ask "How many letters in the word educa" and then we print the output or indicate if no result was found.
When we run, we get the following result:
> Entering new AgentExecutor chain... Invoking: `get_word_length` with `{'word': 'educa'}` 5The word "educa" has 5 letters. > Finished chain. [Output] --> The word "educa" has 5 letters.
You see the agent used the model (llama3.1) to call the tool correctly to get the count of letters in the word.
Conclusion
Thanks for reading.
Check Ollama repo here: https://github.com/ollama/ollama
The above is the detailed content of Create your own Custom LLM Agent Using Open Source Models (llama). For more information, please follow other related articles on the PHP Chinese website!

This tutorial demonstrates how to use Python to process the statistical concept of Zipf's law and demonstrates the efficiency of Python's reading and sorting large text files when processing the law. You may be wondering what the term Zipf distribution means. To understand this term, we first need to define Zipf's law. Don't worry, I'll try to simplify the instructions. Zipf's Law Zipf's law simply means: in a large natural language corpus, the most frequently occurring words appear about twice as frequently as the second frequent words, three times as the third frequent words, four times as the fourth frequent words, and so on. Let's look at an example. If you look at the Brown corpus in American English, you will notice that the most frequent word is "th

This article explains how to use Beautiful Soup, a Python library, to parse HTML. It details common methods like find(), find_all(), select(), and get_text() for data extraction, handling of diverse HTML structures and errors, and alternatives (Sel

This article compares TensorFlow and PyTorch for deep learning. It details the steps involved: data preparation, model building, training, evaluation, and deployment. Key differences between the frameworks, particularly regarding computational grap

Serialization and deserialization of Python objects are key aspects of any non-trivial program. If you save something to a Python file, you do object serialization and deserialization if you read the configuration file, or if you respond to an HTTP request. In a sense, serialization and deserialization are the most boring things in the world. Who cares about all these formats and protocols? You want to persist or stream some Python objects and retrieve them in full at a later time. This is a great way to see the world on a conceptual level. However, on a practical level, the serialization scheme, format or protocol you choose may determine the speed, security, freedom of maintenance status, and other aspects of the program

Python's statistics module provides powerful data statistical analysis capabilities to help us quickly understand the overall characteristics of data, such as biostatistics and business analysis. Instead of looking at data points one by one, just look at statistics such as mean or variance to discover trends and features in the original data that may be ignored, and compare large datasets more easily and effectively. This tutorial will explain how to calculate the mean and measure the degree of dispersion of the dataset. Unless otherwise stated, all functions in this module support the calculation of the mean() function instead of simply summing the average. Floating point numbers can also be used. import random import statistics from fracti

In this tutorial you'll learn how to handle error conditions in Python from a whole system point of view. Error handling is a critical aspect of design, and it crosses from the lowest levels (sometimes the hardware) all the way to the end users. If y

The article discusses popular Python libraries like NumPy, Pandas, Matplotlib, Scikit-learn, TensorFlow, Django, Flask, and Requests, detailing their uses in scientific computing, data analysis, visualization, machine learning, web development, and H

This tutorial builds upon the previous introduction to Beautiful Soup, focusing on DOM manipulation beyond simple tree navigation. We'll explore efficient search methods and techniques for modifying HTML structure. One common DOM search method is ex


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Dreamweaver Mac version
Visual web development tools

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

Notepad++7.3.1
Easy-to-use and free code editor

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

SublimeText3 Mac version
God-level code editing software (SublimeText3)
