Things you should know before reading this article:
- What is Parallelism?
- What is Concurrency?
- What is a Deadlock?
- What is Race Concurrency?
- What is a Process?
- What is a Thread?
Introduction
The Global Interpreter Lock, is a lock that protects access to Python objects and carefully controls thread execution, preventing race concurrency in data access and modification, ensuring that only one thread can execute Python code at a time.
Without the GIL, Python’s memory management can be not thread-safe, it could lead to inconsistencies and crashes. (Deadlocks)
2 - How it works?
It's very simple, Thread will hold the GIL when it is running, and after running the Thread will release the GIL. The next threads must request access to the GIL in order to execute Opcodes (low-level operations). I draw one example of GIL behavior below:
- Moment 1:
- Moment 2:
- Moment 3:
It means that Python developers can utilize async code, and multi-threaded code and never have to worry about acquiring locks on any variables in the process running or having processes crash from deadlocks.
3 - Pros of using GIL:
- It simplifies the implementation of CPython's memory management, avoiding race conditions.
- This mechanism ensures that Python's core data structures, like dictionaries and lists, are thread-safe without requiring complex locking mechanisms.
- The GIL makes it easier to integrate C extensions with Python and allows the use of CPython, the most common interpreter and compiler used by the community.
4 - Cons of using GIL:
- The most significant drawback of the GIL is that it prevents Python programs from taking full advantage of multi-core CPUs using multi-threading.
- In CPU-bound applications, the GIL can become a significant bottleneck, as it prevents true parallel execution of threads
- As Developer, you may face challenges when trying to optimize multi-threaded Python programs.
5 - How to Deal With GIL Cons?
Instead of using threads, you can use processes to run your algorithms in some cases. For IO/Bound operations Threading and concurrency can allow you to have a better use of your resources, for CPU/Bound operations you can use the multiprocessing library to better resource use.
The above is the detailed content of What is Python GIL? How it works?. For more information, please follow other related articles on the PHP Chinese website!

Arraysaregenerallymorememory-efficientthanlistsforstoringnumericaldataduetotheirfixed-sizenatureanddirectmemoryaccess.1)Arraysstoreelementsinacontiguousblock,reducingoverheadfrompointersormetadata.2)Lists,oftenimplementedasdynamicarraysorlinkedstruct

ToconvertaPythonlisttoanarray,usethearraymodule:1)Importthearraymodule,2)Createalist,3)Usearray(typecode,list)toconvertit,specifyingthetypecodelike'i'forintegers.Thisconversionoptimizesmemoryusageforhomogeneousdata,enhancingperformanceinnumericalcomp

Python lists can store different types of data. The example list contains integers, strings, floating point numbers, booleans, nested lists, and dictionaries. List flexibility is valuable in data processing and prototyping, but it needs to be used with caution to ensure the readability and maintainability of the code.

Pythondoesnothavebuilt-inarrays;usethearraymoduleformemory-efficienthomogeneousdatastorage,whilelistsareversatileformixeddatatypes.Arraysareefficientforlargedatasetsofthesametype,whereaslistsofferflexibilityandareeasiertouseformixedorsmallerdatasets.

ThemostcommonlyusedmoduleforcreatingarraysinPythonisnumpy.1)Numpyprovidesefficienttoolsforarrayoperations,idealfornumericaldata.2)Arrayscanbecreatedusingnp.array()for1Dand2Dstructures.3)Numpyexcelsinelement-wiseoperationsandcomplexcalculationslikemea

ToappendelementstoaPythonlist,usetheappend()methodforsingleelements,extend()formultipleelements,andinsert()forspecificpositions.1)Useappend()foraddingoneelementattheend.2)Useextend()toaddmultipleelementsefficiently.3)Useinsert()toaddanelementataspeci

TocreateaPythonlist,usesquarebrackets[]andseparateitemswithcommas.1)Listsaredynamicandcanholdmixeddatatypes.2)Useappend(),remove(),andslicingformanipulation.3)Listcomprehensionsareefficientforcreatinglists.4)Becautiouswithlistreferences;usecopy()orsl

In the fields of finance, scientific research, medical care and AI, it is crucial to efficiently store and process numerical data. 1) In finance, using memory mapped files and NumPy libraries can significantly improve data processing speed. 2) In the field of scientific research, HDF5 files are optimized for data storage and retrieval. 3) In medical care, database optimization technologies such as indexing and partitioning improve data query performance. 4) In AI, data sharding and distributed training accelerate model training. System performance and scalability can be significantly improved by choosing the right tools and technologies and weighing trade-offs between storage and processing speeds.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SublimeText3 Linux new version
SublimeText3 Linux latest version

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

Dreamweaver CS6
Visual web development tools
