


What are the common thread synchronization mechanisms in C++ multi-threaded programming?
C++ In multi-threaded programming, thread synchronization mechanisms are essential. There are three main types: Mutex locks (Mutex): used to protect exclusive access to shared resources. Condition Variable: Used to notify the thread that a specific condition has been met. Read-Write Lock: Allows multiple threads to read shared data at the same time, but only one thread can write at a time.
Thread synchronization mechanism in C++ multi-threaded programming
In multi-threaded programming, the synchronization mechanism is important to avoid data competition and ensure Thread safety is crucial. The following are some common thread synchronization mechanisms in C++:
Mutex (Mutex)
Mutex is a low-level synchronization mechanism used to protect shared resources exclusive access. It allows only one thread to access critical sections (blocks of code that require synchronization) at a time.
std::mutex m; void critical_section() { std::lock_guard<std::mutex> lock(m); // 临界区代码 }
Condition Variable
Condition variable is used to notify one thread that another thread meets a specific condition. One thread can wait for a condition using the wait()
method, while another thread can signal it using the notify_one()
or notify_all()
method.
std::condition_variable cv; bool condition_met = false; void wait_for_condition() { std::unique_lock<std::mutex> lock(m); cv.wait(lock, []() { return condition_met; }); } void signal_condition() { std::lock_guard<std::mutex> lock(m); condition_met = true; cv.notify_one(); }
Read-Write Lock(Read-Write Lock)
Read-Write Lock allows multiple threads to read shared data at the same time, but only one thread can write at a time Share data.
std::shared_lock<std::shared_mutex> lock(m, std::shared_lock<std::shared_mutex>::defer_lock);
Practical case: shared counter
Consider a shared counter that needs to support the increment and acquisition operations of multiple threads at the same time:
class SharedCounter { std::mutex mutex_; int count_; public: void increment() { std::lock_guard<std::mutex> lock(mutex_); ++count_; } int get() { std::lock_guard<std::mutex> lock(mutex_); return count_; } };
In In this example, the mutex_
mutex is used to protect the count_
variable. Each thread can independently increment the counter via the increment()
method, and can read the current value via the get()
method.
The above is the detailed content of What are the common thread synchronization mechanisms in C++ multi-threaded programming?. For more information, please follow other related articles on the PHP Chinese website!

Working with XML data structures in C can use the TinyXML or pugixml library. 1) Use the pugixml library to parse and generate XML files. 2) Handle complex nested XML elements, such as book information. 3) Optimize XML processing code, and it is recommended to use efficient libraries and streaming parsing. Through these steps, XML data can be processed efficiently.

C still dominates performance optimization because its low-level memory management and efficient execution capabilities make it indispensable in game development, financial transaction systems and embedded systems. Specifically, it is manifested as: 1) In game development, C's low-level memory management and efficient execution capabilities make it the preferred language for game engine development; 2) In financial transaction systems, C's performance advantages ensure extremely low latency and high throughput; 3) In embedded systems, C's low-level memory management and efficient execution capabilities make it very popular in resource-constrained environments.

The choice of C XML framework should be based on project requirements. 1) TinyXML is suitable for resource-constrained environments, 2) pugixml is suitable for high-performance requirements, 3) Xerces-C supports complex XMLSchema verification, and performance, ease of use and licenses must be considered when choosing.

C# is suitable for projects that require development efficiency and type safety, while C is suitable for projects that require high performance and hardware control. 1) C# provides garbage collection and LINQ, suitable for enterprise applications and Windows development. 2)C is known for its high performance and underlying control, and is widely used in gaming and system programming.

C code optimization can be achieved through the following strategies: 1. Manually manage memory for optimization use; 2. Write code that complies with compiler optimization rules; 3. Select appropriate algorithms and data structures; 4. Use inline functions to reduce call overhead; 5. Apply template metaprogramming to optimize at compile time; 6. Avoid unnecessary copying, use moving semantics and reference parameters; 7. Use const correctly to help compiler optimization; 8. Select appropriate data structures, such as std::vector.

The volatile keyword in C is used to inform the compiler that the value of the variable may be changed outside of code control and therefore cannot be optimized. 1) It is often used to read variables that may be modified by hardware or interrupt service programs, such as sensor state. 2) Volatile cannot guarantee multi-thread safety, and should use mutex locks or atomic operations. 3) Using volatile may cause performance slight to decrease, but ensure program correctness.

Measuring thread performance in C can use the timing tools, performance analysis tools, and custom timers in the standard library. 1. Use the library to measure execution time. 2. Use gprof for performance analysis. The steps include adding the -pg option during compilation, running the program to generate a gmon.out file, and generating a performance report. 3. Use Valgrind's Callgrind module to perform more detailed analysis. The steps include running the program to generate the callgrind.out file and viewing the results using kcachegrind. 4. Custom timers can flexibly measure the execution time of a specific code segment. These methods help to fully understand thread performance and optimize code.

Using the chrono library in C can allow you to control time and time intervals more accurately. Let's explore the charm of this library. C's chrono library is part of the standard library, which provides a modern way to deal with time and time intervals. For programmers who have suffered from time.h and ctime, chrono is undoubtedly a boon. It not only improves the readability and maintainability of the code, but also provides higher accuracy and flexibility. Let's start with the basics. The chrono library mainly includes the following key components: std::chrono::system_clock: represents the system clock, used to obtain the current time. std::chron


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

Notepad++7.3.1
Easy-to-use and free code editor

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

Dreamweaver CS6
Visual web development tools
