网上关于使用python 的发送multipart/form-data的方法,多半是采用
ulrlib2 的模拟post方法,如下:
import urllib2 boundary='-------------------------7df3069603d6' data=[] data.append('--%s' % boundary) data.append('Content-Disposition: form-data; name="app_id"\r\n') data.append('xxxxxx') data.append('--%s' % boundary) data.append('Content-Disposition: form-data; name="version"\r\n') data.append('xxxxx') data.append('--%s' % boundary) data.append('Content-Disposition: form-data; name="platform"\r\n') data.append('xxxxx') data.append('--%s' % boundary) data.append('Content-Disposition: form-data; name="libzip"; filename="C:\Users\danwang3\Desktop\libmsc.zip"') data.append('Content-Type: application/octet-stream\r\n') fr=open('C:\Users\danwang3\Desktop\libmsc.zip') content=fr.read() data.append(content) print content fr.close() data.append('--%s--\r\n'%boundary) httpBody='\r\n'.join(data) print type(httpBody) print httpBody postDataUrl='http://xxxxxxxx' req=urllib2.Request(postDataUrl,data=httpBody)
经过测试,使用上述方法发送一段二进制文件的时候,服务器报错,数据有问题!
问题就出在 '\r\n'.join(data)的编码,data内部拥有二进制数据,通过这种编码,可能是把数据转换为utf-8格式,当然有问题。
搜索了很多资料,查到可以使用requests库提交multipart/form-data 格式的数据
一个multipart/form-data 的表单数据,在http里面抓包如下:
#Content-Disposition: form-data;name="app_id" 123456 #-----------------------------7df23df2a0870 #Content-Disposition: form-data;name="version" 2256 -----------------------------7df23df2a0870 Content-Disposition:form-data; name="platform" ios -----------------------------7df23df2a0870 Content-Disposition: form-data;name="libzip";filename="C:\Users\danwang3\Desktop\libmsc.zip" Content-Type: application/x-zip-compressed
---------------------------7df23df2a0870—
上述数据在requests里面可以模拟为:
files={'app_id':(None,'123456'), 'version':(None,'2256'), 'platform':(None,'ios'), 'libzip':('libmsc.zip',open('C:\Users\danwang3\Desktop\libmsc.zip','rb'),'application/x-zip-compressed') }
发送上述post请求,也就是简单的
response=requests.post(url,files=files)
就这么简单
在官方网站上,requests模拟一个表单数据的格式如下:
files = {'name': (
这一行模拟出来的post数据为:
Content-Disposition: form-data; name='name';filename=<filename> Content-Type: <content type> <file object> --boundary
如果filename 和 content-Type不写,那么响应模拟post的数据就不会有二者。
通常使用requests 不像使用urllib2那样可以自动管理cookie,不过如果获取到cookie
可以在requests请求里面一并将cookie发送出去
requests使用的cookie格式如下:
newCookie={} newCookie['key1']='value1' newCookie['key2]='value2' newCookie['key3']='value3'
发送cookie可以使用:
response=requests.post(url,cookies=newCookie)
这样就可以了
拼接form-data的post内容
#!\urs\bin\env python #encoding:utf-8 #设置编码方式 from http2 import http import urllib def ReadFileAsContent(filename): #print filename try: with open(filename, 'rb') as f: filecontent = f.read() except Exception, e: print 'The Error Message in ReadFileAsContent(): ' + e.message return '' return filecontent def get_content_type(filename): import mimetypes return mimetypes.guess_type(filename)[0] or 'application/octet-stream' def isfiledata(p_str): import re r_c = re.compile("^f'(.*)'$") rert = r_c.search(str(p_str)) #rert = re.search("^f'(.*)'$", p_str) if rert: return rert.group(1) else: return None def encode_multipart_formdata(fields): ''''' 该函数用于拼接multipart/form-data类型的http请求中body部分的内容 返回拼接好的body内容及Content-Type的头定义 ''' import random import os BOUNDARY = '----------%s' % ''.join(random.sample('0123456789abcdef', 15)) CRLF = '\r\n' L = [] for (key, value) in fields: filepath = isfiledata(value) if filepath: L.append('--' + BOUNDARY) L.append('Content-Disposition: form-data; name="%s"; filename="%s"' % (key, os.path.basename(filepath))) L.append('Content-Type: %s' % get_content_type(filepath)) L.append('') L.append(ReadFileAsContent(filepath)) else: L.append('--' + BOUNDARY) L.append('Content-Disposition: form-data; name="%s"' % key) L.append('') L.append(value) L.append('--' + BOUNDARY + '--') L.append('') body = CRLF.join(L) content_type = 'multipart/form-data; boundary=%s' % BOUNDARY return content_type, body
其中需要注意的是文件数据的字典值,其格式为f'/path/to/file',具体调用的形式如下:
form_data = [('gShopID','489'),("addItems", r"f'D:\case3guomei.xml'"), ('validateString', '92c99a2a36f47c6aa2f0019caa0591d2')] form_data_re = encode_multipart_formdata(form_data) print form_data_re
返回的内容是一个元组,第一个参数是请求头中Content-Type的值,第二个是具体post的内容。然后使用httplib的post方法就可以发送了。

Arraysaregenerallymorememory-efficientthanlistsforstoringnumericaldataduetotheirfixed-sizenatureanddirectmemoryaccess.1)Arraysstoreelementsinacontiguousblock,reducingoverheadfrompointersormetadata.2)Lists,oftenimplementedasdynamicarraysorlinkedstruct

ToconvertaPythonlisttoanarray,usethearraymodule:1)Importthearraymodule,2)Createalist,3)Usearray(typecode,list)toconvertit,specifyingthetypecodelike'i'forintegers.Thisconversionoptimizesmemoryusageforhomogeneousdata,enhancingperformanceinnumericalcomp

Python lists can store different types of data. The example list contains integers, strings, floating point numbers, booleans, nested lists, and dictionaries. List flexibility is valuable in data processing and prototyping, but it needs to be used with caution to ensure the readability and maintainability of the code.

Pythondoesnothavebuilt-inarrays;usethearraymoduleformemory-efficienthomogeneousdatastorage,whilelistsareversatileformixeddatatypes.Arraysareefficientforlargedatasetsofthesametype,whereaslistsofferflexibilityandareeasiertouseformixedorsmallerdatasets.

ThemostcommonlyusedmoduleforcreatingarraysinPythonisnumpy.1)Numpyprovidesefficienttoolsforarrayoperations,idealfornumericaldata.2)Arrayscanbecreatedusingnp.array()for1Dand2Dstructures.3)Numpyexcelsinelement-wiseoperationsandcomplexcalculationslikemea

ToappendelementstoaPythonlist,usetheappend()methodforsingleelements,extend()formultipleelements,andinsert()forspecificpositions.1)Useappend()foraddingoneelementattheend.2)Useextend()toaddmultipleelementsefficiently.3)Useinsert()toaddanelementataspeci

TocreateaPythonlist,usesquarebrackets[]andseparateitemswithcommas.1)Listsaredynamicandcanholdmixeddatatypes.2)Useappend(),remove(),andslicingformanipulation.3)Listcomprehensionsareefficientforcreatinglists.4)Becautiouswithlistreferences;usecopy()orsl

In the fields of finance, scientific research, medical care and AI, it is crucial to efficiently store and process numerical data. 1) In finance, using memory mapped files and NumPy libraries can significantly improve data processing speed. 2) In the field of scientific research, HDF5 files are optimized for data storage and retrieval. 3) In medical care, database optimization technologies such as indexing and partitioning improve data query performance. 4) In AI, data sharding and distributed training accelerate model training. System performance and scalability can be significantly improved by choosing the right tools and technologies and weighing trade-offs between storage and processing speeds.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

SublimeText3 Mac version
God-level code editing software (SublimeText3)

SublimeText3 Linux new version
SublimeText3 Linux latest version

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft
