Home  >  Article  >  Database  >  Oracle rollup和cube分析

Oracle rollup和cube分析

WBOY
WBOYOriginal
2016-06-07 17:59:02961browse

rollup是对group by的扩展,会进行小计和合计,而cube包含rollup,是粒度更精细的小计和合计。当只有一个字段时,rollup和cube是一样的。 可用grouping对rollup和cube进行测试:0看;1不看[看表示列有显示,不看表示没有显示] ① rollup ㈠ 什么都不看 ㈡ 从

rollup是对group by的扩展,会进行小计和合计,而cube包含rollup,是粒度更精细的小计和合计。当只有一个字段时,rollup和cube是一样的。

可用grouping对rollup和cube进行测试:0看;1不看[看表示列有显示,不看表示没有显示]

① rollup

㈠ 什么都不看

㈡ 从左往右 

-

┌ 先看第1个

│ 再看前2个

└ 后看前3个

② cube:0、1全排列

rollup

rollup后面指定的列以逗号分隔,rollup的计算结果和其后面指定的列的顺序有关,因为rollup的分组具有方向性。若指定n列,则有n+1种分组方式。可改变列的顺序,达到不同的业务需求。一定要牢记列的顺序对结果的影响!

例子:

1.20:32:51 scott@ORCL (^ω^) select a.dname,b.job,sum(b.sal) sum_sal,grouping(a.dname),grouping(b.job)  
2.20:33:06   2    from dept a,emp b  
3.20:33:06   3   where a.deptno=b.deptno  
4.20:33:06   4   group by rollup(a.dname,b.job)  
5.20:33:08   5  /  
6.  
7.DNAME      JOB           SUM_SAL GROUPING(A.DNAME) GROUPING(B.JOB)  
8.---------- ---------- ---------- ----------------- ---------------   
9.SALES      CLERK             950                 0               0  
10.SALES      MANAGER          2850                 0               0  
11.SALES      SALESMAN         5600                 0               0  
12.SALES                       9400                 0               1  
13.RESEARCH   CLERK            1200                 0               0  
14.RESEARCH   ANALYST          7000                 0               0  
15.RESEARCH   MANAGER          2975                 0               0  
16.RESEARCH                   11175                 0               1  
17.ACCOUNTING CLERK            1300                 0               0  
18.ACCOUNTING MANAGER          2450                 0               0  
19.ACCOUNTING PRESIDENT        5000                 0               0  
20.ACCOUNTING                  8750                 0               1  
21.                           29325                 1               1  
22.  
23.已选择13行。 
解释:什么都不看(1,1);从左往右,先看第一个(0,1)

可以将不需要进行小计和合计的列移出rollup,要小计的留在rollup里面。

比如:

1.20:48:37 scott@ORCL (^ω^) select a.dname,b.job,sum(b.sal) sum_sal,grouping(a.dname),grouping(b.job)  
2.20:57:43   2    from dept a,emp b  
3.20:57:43   3   where a.deptno=b.deptno  
4.20:57:43   4   group by a.dname,rollup(b.job)  
5.20:57:45   5  /  
6.  
7.DNAME                        JOB                   SUM_SAL GROUPING(A.DNAME) GROUPING(B.JOB)  
8.---------------------------- ------------------ ---------- ----------------- ---------------   
9.SALES                        CLERK                     950                 0               0  
10.SALES                        MANAGER                  2850                 0               0  
11.SALES                        SALESMAN                 5600                 0               0  
12.SALES                                                 9400                 0               1  
13.RESEARCH                     CLERK                    1200                 0               0  
14.RESEARCH                     ANALYST                  7000                 0               0  
15.RESEARCH                     MANAGER                  2975                 0               0  
16.RESEARCH                                             11175                 0               1  
17.ACCOUNTING                   CLERK                    1300                 0               0  
18.ACCOUNTING                   MANAGER                  2450                 0               0  
19.ACCOUNTING                   PRESIDENT                5000                 0               0  
20.ACCOUNTING                                            8750                 0               1  
21.  
22.已选择12行。 
Statement:
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn