Home >Database >Mysql Tutorial >mysql数据库分表性能优化分析

mysql数据库分表性能优化分析

WBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWB
WBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOriginal
2016-06-07 17:52:141000browse

在mysql使用时到超大千万级数据量时我们大多会考虑到分表查询,分库查询,下面我们来介绍一下关于分表查询时的优化。

我们的项目中有好多不等于的情况。今天写这篇文章简单的分析一下怎么个优化法。
这里的分表逻辑是根据t_group表的user_name组的个数来分的。
因为这种情况单独user_name字段上的索引就属于烂索引。起不了啥名明显的效果。

1、试验PROCEDURE.

 代码如下 复制代码

DELIMITER $$
DROP PROCEDURE `t_girl`.`sp_split_table`$$
CREATE  PROCEDURE `t_girl`.`sp_split_table`()
BEGIN
  declare done int default 0;
  declare v_user_name varchar(20) default '';
  declare v_table_name varchar(64) default '';
  -- Get all users' name.
  declare cur1 cursor for select user_name from t_group group by user_name;
  -- Deal with error or warnings.
  declare continue handler for 1329 set done = 1;
  -- Open cursor.
  open cur1;
  while done 1
  do
    fetch cur1 into v_user_name;
    if not done then
      -- Get table name.
      set v_table_name = concat('t_group_',v_user_name);
      -- Create new extra table.
      set @stmt = concat('create table ',v_table_name,' like t_group');
      prepare s1 from @stmt;
      execute s1;
      drop prepare s1;
      -- Load data into it.
      set @stmt = concat('insert into ',v_table_name,' select * from t_group where user_name = ''',v_user_name,'''');
      prepare s1 from @stmt;
      execute s1;
      drop prepare s1;
    end if;
  end while;
  -- Close cursor.
  close cur1;
  -- Free variable from memory.
  set @stmt = NULL;
END$$

DELIMITER ;

2、试验表。
我们用一个有一千万条记录的表来做测试。

 代码如下 复制代码

mysql> select count(*) from t_group;
+----------+
| count(*) |
+----------+
| 10388608 |
+----------+
1 row in set (0.00 sec)

表结构。
mysql> desc t_group;
+-------------+------------------+------+-----+-------------------+----------------+
| Field       | Type             | Null | Key | Default           | Extra          |
+-------------+------------------+------+-----+-------------------+----------------+
| id          | int(10) unsigned | NO   | PRI | NULL              | auto_increment |
| money       | decimal(10,2)    | NO   |     |                   |                |
| user_name   | varchar(20)      | NO   | MUL |                   |                |
| create_time | timestamp        | NO   |     | CURRENT_TIMESTAMP |                |
+-------------+------------------+------+-----+-------------------+----------------+
4 rows in set (0.00 sec)

索引情况。

mysql> show index from t_group;
+---------+------------+------------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+
| Table   | Non_unique | Key_name         | Seq_in_index | Column_name | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment |
+---------+------------+------------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+
| t_group |          0 | PRIMARY          |            1 | id          | A         |    10388608 |     NULL | NULL   |      | BTREE      |         |
| t_group |          1 | idx_user_name    |            1 | user_name   | A         |           8 |     NULL | NULL   |      | BTREE      |         |
| t_group |          1 | idx_combination1 |            1 | user_name   | A         |           8 |     NULL | NULL   |      | BTREE      |         |
| t_group |          1 | idx_combination1 |            2 | money       | A         |        3776 |     NULL | NULL   |      | BTREE      |         |
+---------+------------+------------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+
4 rows in set (0.00 sec)

PS:
idx_combination1 这个索引是必须的,因为要对user_name来GROUP BY。此时属于松散索引扫描!当然完了后你可以干掉她。
idx_user_name 这个索引是为了加快单独执行constant这种类型的查询。
我们要根据用户名来分表。

 代码如下 复制代码

mysql> select user_name from t_group where 1 group by user_name;
+-----------+
| user_name |
+-----------+
| david     |
| leo       |
| livia     |
| lucy      |
| sarah     |
| simon     |
| sony      |
| sunny     |
+-----------+
8 rows in set (0.00 sec)

所以结果表应该是这样的。

 代码如下 复制代码
mysql> show tables like 't_group_%';
+------------------------------+
| Tables_in_t_girl (t_group_%) |
+------------------------------+
| t_group_david                |
| t_group_leo                  |
| t_group_livia                |
| t_group_lucy                 |
| t_group_sarah                |
| t_group_simon                |
| t_group_sony                 |
| t_group_sunny                |
+------------------------------+
8 rows in set (0.00 sec)

3、对比结果。

 代码如下 复制代码


mysql> select count(*) from t_group where user_name = 'david';
+----------+
| count(*) |
+----------+
|  1298576 |
+----------+
1 row in set (1.71 sec)

执行了将近2秒。

mysql> select count(*) from t_group_david;
+----------+
| count(*) |
+----------+
|  1298576 |
+----------+
1 row in set (0.00 sec)
几乎是瞬间的。

mysql> select count(*) from t_group where user_name 'david';
+----------+
| count(*) |
+----------+
|  9090032 |
+----------+
1 row in set (9.26 sec)
执行了将近10秒,可以想象,这个是实际的项目中是不能忍受的。
mysql> select (select count(*) from t_group) - (select count(*) from t_group_david) as total;
+---------+
| total   |
+---------+
| 9090032 |
+---------+
1 row in set (0.00 sec)
几乎是瞬间的。


我们来看看聚集函数。
对于原表的操作。

 代码如下 复制代码
mysql> select min(money),max(money) from t_group where user_name = 'david';
+------------+------------+
| min(money) | max(money) |
+------------+------------+
|      -6.41 |     500.59 |
+------------+------------+
1 row in set (0.00 sec)
最小,最大值都是FULL INDEX SCAN。所以是瞬间的。
mysql> select sum(money),avg(money) from t_group where user_name = 'david';
+--------------+------------+
| sum(money)   | avg(money) |
+--------------+------------+
| 319992383.84 | 246.417910 |
+--------------+------------+
1 row in set (2.15 sec)

其他聚集函数的结果就不是FULL INDEX SCAN了。耗时2.15秒。

对于小表的操作。

 代码如下 复制代码
mysql> select min(money),max(money) from t_group_david;
+------------+------------+
| min(money) | max(money) |
+------------+------------+
|      -6.41 |     500.59 |
+------------+------------+
1 row in set (1.50 sec)

最大最小值完全是FULL TABLE SCAN,耗时1.50秒,不划算。以此看来。

 代码如下 复制代码
mysql> select sum(money),avg(money) from t_group_david;
+--------------+------------+
| sum(money)   | avg(money) |
+--------------+------------+
| 319992383.84 | 246.417910 |
+--------------+------------+
1 row in set (1.68 sec)

取得这两个结果也是花了快2秒,快了一点。

我们来看看这个小表的结构。

 代码如下 复制代码
mysql> desc t_group_david;
+-------------+------------------+------+-----+-------------------+----------------+
| Field       | Type             | Null | Key | Default           | Extra          |
+-------------+------------------+------+-----+-------------------+----------------+
| id          | int(10) unsigned | NO   | PRI | NULL              | auto_increment |
| money       | decimal(10,2)    | NO   |     |                   |                |
| user_name   | varchar(20)      | NO   | MUL |                   |                |
| create_time | timestamp        | NO   |     | CURRENT_TIMESTAMP |                |
+-------------+------------------+------+-----+-------------------+----------------+
4 rows in set (0.00 sec)

明显的user_name属性是多余的。那么就干掉它。

 代码如下 复制代码
mysql> alter table t_group_david drop user_name;
Query OK, 1298576 rows affected (7.58 sec)
Records: 1298576  Duplicates: 0  Warnings: 0

现在来重新对小表运行查询

 代码如下 复制代码

mysql> select min(money),max(money) from t_group_david;
+------------+------------+
| min(money) | max(money) |
+------------+------------+
|      -6.41 |     500.59 |
+------------+------------+
1 row in set (0.00 sec)

此时是瞬间的。
mysql> select sum(money),avg(money) from t_group_david;
+--------------+------------+
| sum(money)   | avg(money) |
+--------------+------------+
| 319992383.84 | 246.417910 |
+--------------+------------+
1 row in set (0.94 sec)

这次算是控制在一秒以内了。

mysql> Aborted

小总结一下:分出的小表的属性尽量越少越好。大胆的去干吧。

Statement:
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn