search
HomeDatabaseMysql Tutorial 通过案例学调优之--和 SHARED POOL 相关的主要 Latch

通过案例学调优之--和SHAREDPOOL相关的主要Latch3.1、和SHAREDPOOL相关的主要Latch有:Latch:sharedpoolLatch:librarycache我们知道Oracle通过SHAREDPOOL来实现SQ

的相关信息, 如:

wKioL1RkGtWg3qX4AAMVCoYd3pI249.jpg

, 也是通过将不同的

的相 关

  • Library Cache LatchLibrary Cache SHRAE POOL 。 接下来就开始进行硬解析过程,将执行解析后的执行计划等信息记录到 Library Cache ,一 直到硬解析结束。(硬解析)

  • 的话,根据上面的逻辑那说明数 据库中存在大量的硬解析,这个时候就要查找那些

    10:56:01 SCOTT@ prod >show parameter cursor NAME                                 TYPE        VALUE ------------------------------------ ----------- ------------------------------ cursor_sharing                       string      similar cursor_space_for_time                boolean     FALSE open_cursors                         integer     300 session_cached_cursors               integer     50 1、session1:以scott建立测试表 11:44:26 SYS@ prod >conn scott/tiger Connected. 11:01:41 SCOTT@ prod >select * from v$mystat where rownum=1;        SID STATISTIC#      VALUE ---------- ---------- ----------          1          0          0           10:56:09 SCOTT@ prod >create table test as select rownum as col1 ,rownum col2 from user_objects 10:58:38   2  ; Table created. 2、建立测试表直方图 10:58:51 SCOTT@ prod >exec dbms_stats.gather_table_stats(user,'TEST',method_opt=>'for columns col1 size 3'); PL/SQL procedure successfully completed. 10:59:36 SCOTT@ prod >select column_name,num_buckets,histogram from user_tab_col_statistics 11:00:43   2   where table_name='TEST'; COLUMN_NAME                    NUM_BUCKETS HISTOGRAM ------------------------------ ----------- --------------- COL1                                     3 HEIGHT BALANCED 11:01:35 sys@ prod >ALTER SYSTem flush shared_pool; System altered. 3、session 2:以scott建立另一个会话 11:03:44 SCOTT@ prod >select * from v$mystat where rownum=1;        SID STATISTIC#      VALUE ---------- ---------- ----------         44          0          0 11:04:01 SCOTT@ prod >create table test1 as select rownum as col1 ,rownum col2 from user_objects; Table created. 11:04:36 SCOTT@ prod >exec dbms_stats.gather_table_stats(user,'TEST1',method_opt=>'for columns col1 size 3'); PL/SQL procedure successfully completed. 11:05:04 SCOTT@ prod >select column_name,num_buckets,histogram from user_tab_col_statistics 11:05:19   2  where table_name='TEST1'; COLUMN_NAME                    NUM_BUCKETS HISTOGRAM ------------------------------ ----------- --------------- COL1                                     3 HEIGHT BALANCED 11:05:30 sys@ prod >ALTER SYSTem flush shared_pool; System altered. 4、在session 1执行以下操作 11:02:42 SCOTT@ prod >begin 11:06:28   2  for i in 1..50000 loop 11:06:40   3  execute immediate 'select * from test where col1='||i; 11:07:08   4  end loop; 11:07:11   5  end; 11:07:13   6  /    在session 2执行同样地操作 11:07:57 SCOTT@ prod >begin 11:08:01   2  for i in 1..50000 loop 11:08:01   3    execute immediate 'select * from test1 where col1='||i; 11:08:01   4   end loop; 11:08:01   5   end; 11:08:02   6  / 5、查看session event 11:11:36 sys@ prod > select sid,event,p1,p1text,p2,p2text from v$session where sid in (1,44)        SID EVENT                                  P1 P1TEXT                                 P2 P2TEXT ---------- ------------------------------ ---------- ------------------------------ ---------- ------------------------------          1 latch: shared pool              537557404 address                               293 number         44 latch: shared pool              537557404 address                               293 number Elapsed: 00:00:00.00 11:11:38 sys@ prod >/        SID EVENT                                  P1 P1TEXT                                 P2 P2TEXT ---------- ------------------------------ ---------- ------------------------------ ---------- ------------------------------          1 latch: shared pool              537557404 address                               293 number         44 latch: row cache objects        828539960 address                               270 number Elapsed: 00:00:00.00 11:11:39 sys@ prod >/        SID EVENT                                  P1 P1TEXT                                 P2 P2TEXT ---------- ------------------------------ ---------- ------------------------------ ---------- ------------------------------          1 latch: shared pool              537557404 address                               293 number         44 latch: shared pool              537557404 address                               293 number Elapsed: 00:00:00.00 11:11:41 sys@ prod >/        SID EVENT                                  P1 P1TEXT                                 P2 P2TEXT ---------- ------------------------------ ---------- ------------------------------ ---------- ------------------------------          1 latch: shared pool              537557404 address                               293 number         44 latch: row cache objects        828007508 address                               270 number Elapsed: 00:00:00.00 11:11:42 sys@ prod >/        SID EVENT                                  P1 P1TEXT                                 P2 P2TEXT ---------- ------------------------------ ---------- ------------------------------ ---------- ------------------------------          1 latch: shared pool              537557404 address                               293 number         44 latch: shared pool              537557404 address                               293 number 11:12:32 sys@ prod >/        SID EVENT                                  P1 P1TEXT                                 P2 P2TEXT ---------- ------------------------------ ---------- ------------------------------ ---------- ------------------------------          1 latch free                      821793596 address                               274 number         44 latch: shared pool              537557404 address                               293 number    sys@ prod >select sid,event,p1,p1text,p2,p2text from v$session where sid in (1,44)        SID EVENT                                  P1 P1TEXT                                 P2 P2TEXT ---------- ------------------------------ ---------- ------------------------------ ---------- ------------------------------          1 latch: shared pool              537557404 address                               293 number         44 library cache: mutex X         1307903034 idn                                 65536 value 11:14:58 sys@ prod >select sid,event,p1,p1text,p2,p2text from v$session where sid in (1,44)        SID EVENT                                  P1 P1TEXT                                 P2 P2TEXT ---------- ------------------------------ ---------- ------------------------------ ---------- ------------------------------          1 library cache: mutex X         3413592168 idn                               2883584 value         44 latch: row cache objects        828539960 address                               270 number 11:15:18 sys@ prod >select sid,event,p1,p1text,p2,p2text from v$session where sid in (1,44)        SID EVENT                                  P1 P1TEXT                                 P2 P2TEXT ---------- ------------------------------ ---------- ------------------------------ ---------- ------------------------------          1 SQL*Net message from client    1650815232 driver id                               1 #bytes         44 SQL*Net message from client    1650815232 driver id                               1 #bytes 从上面的过程可以看到,大量的硬解析将导致严重的 library cache latch(mutex) 和 shared pool latch竞争。 6、查看Library cache中sql情况 sys@ prod >select *   2           from (select sql_id,child_number,child_latch,executions,sql_text   3                      from v$sql   4                  where sql_text like '%select * from test1 where col1%'   5                       and sql_text not like '%v$sql%'   6                       and sql_text not like '%begin%'   7                   order by child_number desc)   8*      where rownum select sql_id,hash_value,address,version_count from v$sqlarea where sql_id='6tsrjxza4gvur'; SQL_ID        HASH_VALUE ADDRESS  VERSION_COUNT ------------- ---------- -------- ------------- 6tsrjxza4gvur 3561484119 2E8CF368          3885


  • Statement
    The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
    How does MySQL index cardinality affect query performance?How does MySQL index cardinality affect query performance?Apr 14, 2025 am 12:18 AM

    MySQL index cardinality has a significant impact on query performance: 1. High cardinality index can more effectively narrow the data range and improve query efficiency; 2. Low cardinality index may lead to full table scanning and reduce query performance; 3. In joint index, high cardinality sequences should be placed in front to optimize query.

    MySQL: Resources and Tutorials for New UsersMySQL: Resources and Tutorials for New UsersApr 14, 2025 am 12:16 AM

    The MySQL learning path includes basic knowledge, core concepts, usage examples, and optimization techniques. 1) Understand basic concepts such as tables, rows, columns, and SQL queries. 2) Learn the definition, working principles and advantages of MySQL. 3) Master basic CRUD operations and advanced usage, such as indexes and stored procedures. 4) Familiar with common error debugging and performance optimization suggestions, such as rational use of indexes and optimization queries. Through these steps, you will have a full grasp of the use and optimization of MySQL.

    Real-World MySQL: Examples and Use CasesReal-World MySQL: Examples and Use CasesApr 14, 2025 am 12:15 AM

    MySQL's real-world applications include basic database design and complex query optimization. 1) Basic usage: used to store and manage user data, such as inserting, querying, updating and deleting user information. 2) Advanced usage: Handle complex business logic, such as order and inventory management of e-commerce platforms. 3) Performance optimization: Improve performance by rationally using indexes, partition tables and query caches.

    SQL Commands in MySQL: Practical ExamplesSQL Commands in MySQL: Practical ExamplesApr 14, 2025 am 12:09 AM

    SQL commands in MySQL can be divided into categories such as DDL, DML, DQL, DCL, etc., and are used to create, modify, delete databases and tables, insert, update, delete data, and perform complex query operations. 1. Basic usage includes CREATETABLE creation table, INSERTINTO insert data, and SELECT query data. 2. Advanced usage involves JOIN for table joins, subqueries and GROUPBY for data aggregation. 3. Common errors such as syntax errors, data type mismatch and permission problems can be debugged through syntax checking, data type conversion and permission management. 4. Performance optimization suggestions include using indexes, avoiding full table scanning, optimizing JOIN operations and using transactions to ensure data consistency.

    How does InnoDB handle ACID compliance?How does InnoDB handle ACID compliance?Apr 14, 2025 am 12:03 AM

    InnoDB achieves atomicity through undolog, consistency and isolation through locking mechanism and MVCC, and persistence through redolog. 1) Atomicity: Use undolog to record the original data to ensure that the transaction can be rolled back. 2) Consistency: Ensure the data consistency through row-level locking and MVCC. 3) Isolation: Supports multiple isolation levels, and REPEATABLEREAD is used by default. 4) Persistence: Use redolog to record modifications to ensure that data is saved for a long time.

    MySQL's Place: Databases and ProgrammingMySQL's Place: Databases and ProgrammingApr 13, 2025 am 12:18 AM

    MySQL's position in databases and programming is very important. It is an open source relational database management system that is widely used in various application scenarios. 1) MySQL provides efficient data storage, organization and retrieval functions, supporting Web, mobile and enterprise-level systems. 2) It uses a client-server architecture, supports multiple storage engines and index optimization. 3) Basic usages include creating tables and inserting data, and advanced usages involve multi-table JOINs and complex queries. 4) Frequently asked questions such as SQL syntax errors and performance issues can be debugged through the EXPLAIN command and slow query log. 5) Performance optimization methods include rational use of indexes, optimized query and use of caches. Best practices include using transactions and PreparedStatemen

    MySQL: From Small Businesses to Large EnterprisesMySQL: From Small Businesses to Large EnterprisesApr 13, 2025 am 12:17 AM

    MySQL is suitable for small and large enterprises. 1) Small businesses can use MySQL for basic data management, such as storing customer information. 2) Large enterprises can use MySQL to process massive data and complex business logic to optimize query performance and transaction processing.

    What are phantom reads and how does InnoDB prevent them (Next-Key Locking)?What are phantom reads and how does InnoDB prevent them (Next-Key Locking)?Apr 13, 2025 am 12:16 AM

    InnoDB effectively prevents phantom reading through Next-KeyLocking mechanism. 1) Next-KeyLocking combines row lock and gap lock to lock records and their gaps to prevent new records from being inserted. 2) In practical applications, by optimizing query and adjusting isolation levels, lock competition can be reduced and concurrency performance can be improved.

    See all articles

    Hot AI Tools

    Undresser.AI Undress

    Undresser.AI Undress

    AI-powered app for creating realistic nude photos

    AI Clothes Remover

    AI Clothes Remover

    Online AI tool for removing clothes from photos.

    Undress AI Tool

    Undress AI Tool

    Undress images for free

    Clothoff.io

    Clothoff.io

    AI clothes remover

    AI Hentai Generator

    AI Hentai Generator

    Generate AI Hentai for free.

    Hot Article

    R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
    3 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
    R.E.P.O. Best Graphic Settings
    3 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
    R.E.P.O. How to Fix Audio if You Can't Hear Anyone
    4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
    WWE 2K25: How To Unlock Everything In MyRise
    1 months agoBy尊渡假赌尊渡假赌尊渡假赌

    Hot Tools

    SublimeText3 Mac version

    SublimeText3 Mac version

    God-level code editing software (SublimeText3)

    Safe Exam Browser

    Safe Exam Browser

    Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

    MantisBT

    MantisBT

    Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

    SecLists

    SecLists

    SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

    ZendStudio 13.5.1 Mac

    ZendStudio 13.5.1 Mac

    Powerful PHP integrated development environment