Home  >  Article  >  Database  >  Hadoop自动化安装及单节点方式运行

Hadoop自动化安装及单节点方式运行

WBOY
WBOYOriginal
2016-06-07 16:34:351144browse

本文尝试使用shell脚本来自动化安装配置Hadoop。使用的操作系统为CentOS,Hadoop版本为?1.x,jdk版本?1.7,其他版本未测试,可能有未知bug。 Hadoop安装脚本 Hadoop安装分为3步,首先安装jdk,然后安装Hadoop,接着配置ssh免密码登陆(非必须)。[1] #!/bin/ba

本文尝试使用shell脚本来自动化安装配置Hadoop。使用的操作系统为CentOS,Hadoop版本为?1.x,jdk版本?1.7,其他版本未测试,可能有未知bug。

Hadoop安装脚本

Hadoop安装分为3步,首先安装jdk,然后安装Hadoop,接着配置ssh免密码登陆(非必须)。[1]

#!/bin/bash
# Usage: Hadoop自动配置脚本
# History: 
#	20140425  annhe  基本功能
#Hadoop版本
HADOOP_VERSION=1.2.1
#Jdk版本,Oracle官方无直链下载,请自备rpm包并设定版本号
JDK_VESION=7u51
#Hadoop下载镜像,默认为北理(bit)
MIRRORS=mirror.bit.edu.cn
#操作系统版本
OS=`uname -a |awk '{print $13}'`
# Check if user is root
if [ $(id -u) != "0" ]; then
    printf "Error: You must be root to run this script!\n"
    exit 1
fi
# 检查是否是Centos
cat /etc/issue|grep CentOS && r=0 || r=1
if [ $r -eq 1 ]; then
	echo "This script can only run on CentOS!"
	exit 1
fi
#软件包
HADOOP_FILE=hadoop-$HADOOP_VERSION-1.$OS.rpm
if [ "$OS"x = "x86_64"x ]; then
	JDK_FILE=jdk-$JDK_VESION-linux-x64.rpm
else
	JDK_FILE=jdk-$JDK_VESION-linux-i586.rpm
fi
function Install ()
{
	#卸载已安装版本
	rpm -qa |grep hadoop
	rpm -e hadoop
	rpm -qa | grep jdk
	rpm -e jdk
	#恢复/etc/profile备份文件
	mv /etc/profile.bak /etc/profile
	#准备软件包
	if [ ! -f $HADOOP_FILE ]; then
		wget "http://$MIRRORS/apache/hadoop/common/stable1/$HADOOP_FILE" && r=0 || r=1
		[ $r -eq 1 ] && { echo "download error, please check your mirrors or check your network....exit"; exit 1; }
	fi
	[ ! -f $JDK_FILE ] && { echo "$JDK_FILE not found! Please download yourself....exit"; exit 1; }
	#开始安装
	rpm -ivh $JDK_FILE && r=0 || r=1
	if [ $r -eq 1 ]; then
		echo "$JDK_FILE install failed, please verify your rpm file....exit"
		exit 1
	fi
	rpm -ivh $HADOOP_FILE && r=0 || r=1
	if [ $r -eq 1 ]; then
		echo "$HADOOP_FILE install failed, please verify your rpm file....exit"
		exit 1
	fi
	#备份/etc/profile
	cp /etc/profile /etc/profile.bak
	#配置java环境变量
	cat >> /etc/profile > ~/.ssh/authorized_keys
	chmod 644 ~/.ssh/authorized_keys
}
Install 2>&1 | tee -a hadoop_install.log
SSHlogin 2>&1 | tee -a hadoop_install.log
#修改HADOOP_CLIENT_OPTS后需要重启 
shutdown -r now

单节点运行自带示例

默认情况下,Hadoop被配置成以非分布式模式运行的一个独立Java进程。这对调试非常有帮助。新建测试文本

[root@linux hadoop]# echo "hello world" >input/hello.txt
[root@linux hadoop]# echo "hello hadoop" >input/hadoop.txt

运行Wordcount

[root@linux hadoop]# hadoop jar /usr/share/hadoop/hadoop-examples-1.2.1.jar wordcount input output
14/04/26 02:56:23 INFO util.NativeCodeLoader: Loaded the native-hadoop library
14/04/26 02:56:23 INFO input.FileInputFormat: Total input paths to process : 2
14/04/26 02:56:24 WARN snappy.LoadSnappy: Snappy native library not loaded
14/04/26 02:56:24 INFO mapred.JobClient: Running job: job_local275273933_0001
14/04/26 02:56:24 INFO mapred.LocalJobRunner: Waiting for map tasks
14/04/26 02:56:24 INFO mapred.LocalJobRunner: Starting task: attempt_local275273933_0001_m_000000_0
14/04/26 02:56:25 INFO util.ProcessTree: setsid exited with exit code 0
14/04/26 02:56:25 INFO mapred.Task:  Using ResourceCalculatorPlugin : org.apache.hadoop.util.LinuxResourceCalculatorPlugin@7e86fe3a
14/04/26 02:56:25 INFO mapred.MapTask: Processing split: file:/root/hadoop/input/hadoop.txt:0+13
14/04/26 02:56:25 INFO mapred.MapTask: io.sort.mb = 100
14/04/26 02:56:25 INFO mapred.MapTask: data buffer = 79691776/99614720
14/04/26 02:56:25 INFO mapred.MapTask: record buffer = 262144/327680
14/04/26 02:56:25 INFO mapred.MapTask: Starting flush of map output
14/04/26 02:56:25 INFO mapred.MapTask: Finished spill 0
14/04/26 02:56:25 INFO mapred.Task: Task:attempt_local275273933_0001_m_000000_0 is done. And is in the process of commiting
14/04/26 02:56:25 INFO mapred.LocalJobRunner:
14/04/26 02:56:25 INFO mapred.Task: Task 'attempt_local275273933_0001_m_000000_0' done.
14/04/26 02:56:25 INFO mapred.LocalJobRunner: Finishing task: attempt_local275273933_0001_m_000000_0
14/04/26 02:56:25 INFO mapred.LocalJobRunner: Starting task: attempt_local275273933_0001_m_000001_0
14/04/26 02:56:25 INFO mapred.Task:  Using ResourceCalculatorPlugin : org.apache.hadoop.util.LinuxResourceCalculatorPlugin@16ed889d
14/04/26 02:56:25 INFO mapred.MapTask: Processing split: file:/root/hadoop/input/hello.txt:0+12
14/04/26 02:56:25 INFO mapred.MapTask: io.sort.mb = 100
14/04/26 02:56:25 INFO mapred.MapTask: data buffer = 79691776/99614720
14/04/26 02:56:25 INFO mapred.MapTask: record buffer = 262144/327680
14/04/26 02:56:25 INFO mapred.MapTask: Starting flush of map output
14/04/26 02:56:25 INFO mapred.MapTask: Finished spill 0
14/04/26 02:56:25 INFO mapred.Task: Task:attempt_local275273933_0001_m_000001_0 is done. And is in the process of commiting
14/04/26 02:56:25 INFO mapred.LocalJobRunner:
14/04/26 02:56:25 INFO mapred.Task: Task 'attempt_local275273933_0001_m_000001_0' done.
14/04/26 02:56:25 INFO mapred.LocalJobRunner: Finishing task: attempt_local275273933_0001_m_000001_0
14/04/26 02:56:25 INFO mapred.LocalJobRunner: Map task executor complete.
14/04/26 02:56:25 INFO mapred.Task:  Using ResourceCalculatorPlugin : org.apache.hadoop.util.LinuxResourceCalculatorPlugin@42701c57
14/04/26 02:56:25 INFO mapred.LocalJobRunner:
14/04/26 02:56:25 INFO mapred.Merger: Merging 2 sorted segments
14/04/26 02:56:25 INFO mapred.Merger: Down to the last merge-pass, with 2 segments left of total size: 53 bytes
14/04/26 02:56:25 INFO mapred.LocalJobRunner:
14/04/26 02:56:25 INFO mapred.Task: Task:attempt_local275273933_0001_r_000000_0 is done. And is in the process of commiting
14/04/26 02:56:25 INFO mapred.LocalJobRunner:
14/04/26 02:56:25 INFO mapred.Task: Task attempt_local275273933_0001_r_000000_0 is allowed to commit now
14/04/26 02:56:25 INFO output.FileOutputCommitter: Saved output of task 'attempt_local275273933_0001_r_000000_0' to output
14/04/26 02:56:25 INFO mapred.LocalJobRunner: reduce > reduce
14/04/26 02:56:25 INFO mapred.Task: Task 'attempt_local275273933_0001_r_000000_0' done.
14/04/26 02:56:25 INFO mapred.JobClient:  map 100% reduce 100%
14/04/26 02:56:25 INFO mapred.JobClient: Job complete: job_local275273933_0001
14/04/26 02:56:25 INFO mapred.JobClient: Counters: 20
14/04/26 02:56:25 INFO mapred.JobClient:   File Output Format Counters
14/04/26 02:56:25 INFO mapred.JobClient:     Bytes Written=37
14/04/26 02:56:25 INFO mapred.JobClient:   FileSystemCounters
14/04/26 02:56:25 INFO mapred.JobClient:     FILE_BYTES_READ=429526
14/04/26 02:56:25 INFO mapred.JobClient:     FILE_BYTES_WRITTEN=586463
14/04/26 02:56:25 INFO mapred.JobClient:   File Input Format Counters
14/04/26 02:56:25 INFO mapred.JobClient:     Bytes Read=25
14/04/26 02:56:25 INFO mapred.JobClient:   Map-Reduce Framework
14/04/26 02:56:25 INFO mapred.JobClient:     Reduce input groups=3
14/04/26 02:56:25 INFO mapred.JobClient:     Map output materialized bytes=61
14/04/26 02:56:25 INFO mapred.JobClient:     Combine output records=4
14/04/26 02:56:25 INFO mapred.JobClient:     Map input records=2
14/04/26 02:56:25 INFO mapred.JobClient:     Reduce shuffle bytes=0
14/04/26 02:56:25 INFO mapred.JobClient:     Physical memory (bytes) snapshot=0
14/04/26 02:56:25 INFO mapred.JobClient:     Reduce output records=3
14/04/26 02:56:25 INFO mapred.JobClient:     Spilled Records=8
14/04/26 02:56:25 INFO mapred.JobClient:     Map output bytes=41
14/04/26 02:56:25 INFO mapred.JobClient:     CPU time spent (ms)=0
14/04/26 02:56:25 INFO mapred.JobClient:     Total committed heap usage (bytes)=480915456
14/04/26 02:56:25 INFO mapred.JobClient:     Virtual memory (bytes) snapshot=0
14/04/26 02:56:25 INFO mapred.JobClient:     Combine input records=4
14/04/26 02:56:25 INFO mapred.JobClient:     Map output records=4
14/04/26 02:56:25 INFO mapred.JobClient:     SPLIT_RAW_BYTES=197
14/04/26 02:56:25 INFO mapred.JobClient:     Reduce input records=

结果

[root@linux hadoop]# cat output/*
hadoop  1
hello   2
world   1

?运行自己编写的Wordcount

package net.annhe.wordcount;
import java.io.IOException;
import java.util.*;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.conf.*;
import org.apache.hadoop.io.*;
import org.apache.hadoop.mapreduce.*;
import org.apache.hadoop.mapreduce.lib.input.*;
import org.apache.hadoop.mapreduce.lib.output.*;
import org.apache.hadoop.util.*;
public class WordCount extends Configured implements Tool {
	public static class Map extends Mapper<longwritable text intwritable> {
		private final static IntWritable one = new IntWritable(1);
		private Text word = new Text();
		public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
			String line = value.toString();
			StringTokenizer tokenizer = new StringTokenizer(line);
			while (tokenizer.hasMoreTokens()) {
				word.set(tokenizer.nextToken());
				context.write(word,one);
			}
		}
	}
	public static class Reduce extends Reducer<text intwritable text> {
		public void reduce (Text key, Iterable<intwritable> values, Context context) throws IOException, InterruptedException {
			int sum=0;
			for(IntWritable val : values) {
				sum += val.get();
			}
			context.write(key, new IntWritable(sum));
		}
	}
	public int run(String[] args) throws Exception {
		Job job = new Job(getConf());
		job.setJarByClass(WordCount.class);
		job.setJobName("wordcount");
		job.setOutputKeyClass(Text.class);
		job.setOutputValueClass(IntWritable.class);
		job.setMapperClass(Map.class);
		job.setReducerClass(Reduce.class);
		job.setInputFormatClass(TextInputFormat.class);
		job.setOutputFormatClass(TextOutputFormat.class);
		FileInputFormat.setInputPaths(job, new Path(args[0]));
		FileOutputFormat.setOutputPath(job, new Path(args[1]));
		boolean success = job.waitForCompletion(true);
		return success ? 0 : 1;
	}
	public static void main(String[] args) throws Exception {
		int ret = ToolRunner.run(new WordCount(),args);
		System.exit(ret);
	}
}</intwritable></text></longwritable>

编译

javac -classpath /usr/share/hadoop/hadoop-core-1.2.1.jar -d . WordCount.java

打包

jar -vcf wordcount.jar -C demo/ .

运行

hadoop jar wordcount.jar net.annhe.wordcount.WordCount input/ out

结果

[root@linux hadoop]# cat out/*
hadoop  1
hello   2
world   1

?遇到的问题

1. 内存不足

分给虚拟机的内存才180M,运行实例程序时报错:

java.lang.Exception: java.lang.OutOfMemoryError: Java heap space

解决方案:
增加虚拟机内存,并编辑/etc/hadoop/hadoop-env.sh,修改:

export HADOOP_CLIENT_OPTS="-Xmx512m $HADOOP_CLIENT_OPTS" #改成512m

原来启动JVM时配置的最大内存是128m,当运行hadoop的一些自带的实例会报内存溢出,其实这里是可以修改内存大小
如果不需要也不必修改。[2]

?2. 带有包名的类的引用

带有包名的类要按照包层次调用类。如上面的 net.annhe.wordcount.WordCount [3]

3. 带有包名的类的编译

需要打包编译,加-d选项。

java的类文件是应该放入包中的,如package abc;
public class ls {...} 那么这个abc就是就是类ls的包,那么编译的时候就应该创建相应的abc包,具体就是用javac的一个参数,就是这个-d来生成这个类文件的包,例如上面的类在编译时应该写javac -d . ls.java注意javac和-d,-d和后面的.,.和后面的ls.java中间都有空格[4]

参考资料

[1]. 陆嘉桓. Hadoop实战. 第二版. 机械工业出版社

[2]. OSchina博客:http://my.oschina.net/mynote/blog/93340

[3]. CSDN博客:http://blog.csdn.net/xw13106209/article/details/6861855

[4]. 百度知道:http://zhidao.baidu.com/link?url=ND1BWmyGb_5a05Jntd9vGZNWGtmJmcKF1V6dhVNM1eFNuHL6kbQyVrEWtCUmy7KYP5F66R2BumCifCnPQnYdD_


本文遵从CC版权协定,转载请以链接形式注明出处。
本文链接地址: http://www.annhe.net/article-2672.html
Statement:
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn