search
HomeDatabaseMysql Tutorial<<Signals and systems>> Chapter

Signals and systems Chapter 2 Linear Time-Inverariant Systems 2.1 Discrete-time LTI system: the convolution sum 离散的信号可以用叠合的不同幅的delta函数表示出来 The discret-time unit impulse response and the convolution sum representation o

> Chapter 2 





                                                     Linear Time-Inverariant Systems


2.1 Discrete-time LTI system: the convolution sum


离散的信号可以用叠合的不同幅值的delta函数表示出来

<<Signals and systems>> Chapter




The discret-time unit impulse response and the convolution sum representation of LTI systems


<<Signals and systems>> Chapter



<<Signals and systems>> Chapter<<Signals and systems>> Chapter


上面的例子很清楚的一步步的解析了卷积和的过程.


卷积和的部分可以去看看我写的这篇Why should we use convolution?》

对于为什么是x[k]*h[n-k]

这里研究的是LTI系统,h[n]是LTI系统,对于不同时刻k输入x[k],系统的响应仅仅做偏移即可,

x[0]输入的对应h为h[0],x[1]对应的h为h[n-1]... x[k] 对应的就是h[n-k]


为了加深概念的理解,我们再看看时变系统卷积和的过程

输入是X[n],响应是h,注意时变系统的输入响应不同时刻不同,所以这里有三个不同的响应

<<Signals and systems>> Chapter


我们把输入看作impluse 序列,这样,利用delta函数的性质,就很容易get到输出了哇~


<<Signals and systems>> Chapter


要知道对系统输入的是一系列的impulse,于是应该把所有结果(x[-1]h[-1], ...,x[1]h[1])累加起来,得到输出y[n],

这就是为什么下面y[n]卷积和公式里面会有连加符号的原因!


<<Signals and systems>> Chapter


而正是由于时变系统的特性,会导致一种有趣的现象,对于输入x[n]和响应h[n]

<<Signals and systems>> Chapter

<<Signals and systems>> Chapter

计算过程中直接把h[n]反转,然后偏移k个单位,直接于原来的输入信号做乘法,然后把各个单位的结果做累加,得到的就是此刻的输出y[n],最后系统的输出这里书上有一定的“误导性”,之所以打双引号是因为这里h[n]是一个无限长的step function,所以后面无穷逼近于1/(1-alpha). 

<<Signals and systems>> Chapter

在计算机中,不可能用无穷序列来模拟...输入序列就是有限的,那么输出就会是

(length of x[n]) + (length of h[n]) -1。

为什么会是减一?想想,如果输出到(length of x[n]) + (length of h[n])个点的时候,两者已经没有重叠区域,于是得到的结果是0.这里我们不考虑这个没有意义的点.于是输出就只有(length of x[n]) + (length of h[n]) -1个点

这里我做了个例子



%code writer	:	EOF
%code date	:	2014.10 .1
%e-mail		:	jasonleaster@gmail.com
%code file	:	demo_for_convolution
%code purpose:
%             A demo for convolution in LTI-system
clear all
close all

% you could use this varible to define how many number of points in the input sequence.
points = 10;

% x is used as input points
% h is used as responce sequnce.

% %% input sequence one
% x = exp(-[0: (points-1)]);
% h = ones(1,points*10);

%% Input sequence two
alpha = 2;
x = [1 1 1 1 1];
h = alpha.^([0:6]);

length_x = size(x,2);
length_h = size(h,2);

figure(1);
subplot(121);
scatter(1:length_x,x,'r');
title('x[n]');
subplot(122);
scatter(1:length_h,h,'g');
title('h[n]');

output = zeros(1,length_x+length_h -1);

%% Kernel part of our convolution sum   :- )
for current_point_n= 1:length_x + length_h

        tmp = current_point_n;
        while(tmp > 0)

            if  current_point_n  length_x && current_point_n  length_x
                    tmp = tmp -1;
                    continue;
                else
                    if (current_point_n - tmp + 1) <br>
<br>

<p><span><img  src="/static/imghwm/default1.png" data-src="/inc/test.jsp?url=http%3A%2F%2Fimg.blog.csdn.net%2F20141001015131468&refer=http%3A%2F%2Fblog.csdn.net%2Fcinmyheart%2Farticle%2Fdetails%2F39695943" class="lazy" alt="&lt;&lt;Signals and systems&gt;&gt; Chapter" ><br>
</span></p>
<p><span><br>
</span></p>
<p><span>上面的输入随意调整都性,程序还是比较健壮的</span></p>
<p><span><br>
</span></p>
<p><span><img  src="/static/imghwm/default1.png" data-src="/inc/test.jsp?url=http%3A%2F%2Fimg.blog.csdn.net%2F20141001015326265&refer=http%3A%2F%2Fblog.csdn.net%2Fcinmyheart%2Farticle%2Fdetails%2F39695943" class="lazy" alt="&lt;&lt;Signals and systems&gt;&gt; Chapter" ><br>
</span></p>
<p><span><br>
</span></p>
<p><span><br>
</span></p>
<p><span><br>
</span></p>
<p><span><br>
</span></p>
<p><span>Properties of LTI systems</span></p>
<p><span>交换律,结合律,分配律</span></p>
<p><span><img  src="/static/imghwm/default1.png" data-src="/inc/test.jsp?url=http%3A%2F%2Fimg.blog.csdn.net%2F20141001021021577&refer=http%3A%2F%2Fblog.csdn.net%2Fcinmyheart%2Farticle%2Fdetails%2F39695943" class="lazy" alt="&lt;&lt;Signals and systems&gt;&gt; Chapter" ><br>
</span></p>
<p><span><br>
</span></p>
<p><span>对于可逆性的说明demo:</span></p>
<p><span><br>
</span></p>
<p><span><img  src="/static/imghwm/default1.png" data-src="/inc/test.jsp?url=http%3A%2F%2Fimg.blog.csdn.net%2F20141001021621579&refer=http%3A%2F%2Fblog.csdn.net%2Fcinmyheart%2Farticle%2Fdetails%2F39695943" class="lazy" alt="&lt;&lt;Signals and systems&gt;&gt; Chapter" >                                                 </span></p>
<p><span><br>
</span></p>
<p><span><br>
</span></p>
<p><span>对于因果性的探讨,</span></p>
<p><span><br>
</span></p>
<p><span><img  src="/static/imghwm/default1.png" data-src="/inc/test.jsp?url=http%3A%2F%2Fimg.blog.csdn.net%2F20141001021454312&refer=http%3A%2F%2Fblog.csdn.net%2Fcinmyheart%2Farticle%2Fdetails%2F39695943" class="lazy" alt="&lt;&lt;Signals and systems&gt;&gt; Chapter" ><br>
</span></p>

<p><br>
</p>
<p><br>
</p>
<p><br>
</p>

<p><br>
</p>
<p><span>稳定性的探究:</span></p>

<p><span><img  src="/static/imghwm/default1.png" data-src="/inc/test.jsp?url=http%3A%2F%2Fimg.blog.csdn.net%2F20141001021826364&refer=http%3A%2F%2Fblog.csdn.net%2Fcinmyheart%2Farticle%2Fdetails%2F39695943" class="lazy" alt="&lt;&lt;Signals and systems&gt;&gt; Chapter" ><br>
</span></p>
<p><span><br>
</span></p>
<p><span><br>
</span></p>
<p><span>最后,要认识到,微分方程和差分方程仅仅是分别对于连续和离散系统的输入输出关系的描述而已,他们相似于都是对系统输入输出的描述,不可混淆对比.之前我胡乱的做对比,以至于很苦恼</span></p>
<p><span>这里记录了我思考的过程</span></p>
<p>http://blog.csdn.net/cinmyheart/article/details/39499967<br>
</p>
<p><span><br>
</span></p>
<p><br>
</p>


Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
How to solve the problem of mysql cannot open shared libraryHow to solve the problem of mysql cannot open shared libraryMar 04, 2025 pm 04:01 PM

This article addresses MySQL's "unable to open shared library" error. The issue stems from MySQL's inability to locate necessary shared libraries (.so/.dll files). Solutions involve verifying library installation via the system's package m

Reduce the use of MySQL memory in DockerReduce the use of MySQL memory in DockerMar 04, 2025 pm 03:52 PM

This article explores optimizing MySQL memory usage in Docker. It discusses monitoring techniques (Docker stats, Performance Schema, external tools) and configuration strategies. These include Docker memory limits, swapping, and cgroups, alongside

How do you alter a table in MySQL using the ALTER TABLE statement?How do you alter a table in MySQL using the ALTER TABLE statement?Mar 19, 2025 pm 03:51 PM

The article discusses using MySQL's ALTER TABLE statement to modify tables, including adding/dropping columns, renaming tables/columns, and changing column data types.

Run MySQl in Linux (with/without podman container with phpmyadmin)Run MySQl in Linux (with/without podman container with phpmyadmin)Mar 04, 2025 pm 03:54 PM

This article compares installing MySQL on Linux directly versus using Podman containers, with/without phpMyAdmin. It details installation steps for each method, emphasizing Podman's advantages in isolation, portability, and reproducibility, but also

What is SQLite? Comprehensive overviewWhat is SQLite? Comprehensive overviewMar 04, 2025 pm 03:55 PM

This article provides a comprehensive overview of SQLite, a self-contained, serverless relational database. It details SQLite's advantages (simplicity, portability, ease of use) and disadvantages (concurrency limitations, scalability challenges). C

How do I configure SSL/TLS encryption for MySQL connections?How do I configure SSL/TLS encryption for MySQL connections?Mar 18, 2025 pm 12:01 PM

Article discusses configuring SSL/TLS encryption for MySQL, including certificate generation and verification. Main issue is using self-signed certificates' security implications.[Character count: 159]

Running multiple MySQL versions on MacOS: A step-by-step guideRunning multiple MySQL versions on MacOS: A step-by-step guideMar 04, 2025 pm 03:49 PM

This guide demonstrates installing and managing multiple MySQL versions on macOS using Homebrew. It emphasizes using Homebrew to isolate installations, preventing conflicts. The article details installation, starting/stopping services, and best pra

What are some popular MySQL GUI tools (e.g., MySQL Workbench, phpMyAdmin)?What are some popular MySQL GUI tools (e.g., MySQL Workbench, phpMyAdmin)?Mar 21, 2025 pm 06:28 PM

Article discusses popular MySQL GUI tools like MySQL Workbench and phpMyAdmin, comparing their features and suitability for beginners and advanced users.[159 characters]

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
Repo: How To Revive Teammates
1 months agoBy尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: How To Get Giant Seeds
4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

Atom editor mac version download

Atom editor mac version download

The most popular open source editor

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Integrate Eclipse with SAP NetWeaver application server.

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.