Heim >Technologie-Peripheriegeräte >KI >Wie sich Deep Learning für die Cybersicherheit als nützlich erweisen könnte
Die Bedrohung durch Cyberangriffe hat in letzter Zeit dramatisch zugenommen und traditionelle Maßnahmen scheinen mittlerweile nicht mehr wirksam genug zu sein.
Aus diesem Grund macht Deep Learning im Bereich Cybersicherheit rasch Fortschritte und könnte der Schlüssel zur Lösung aller Cybersicherheitsprobleme sein.
Die Netzwerksicherheitsbranche steht vor vielen Herausforderungen, und Deep-Learning-Technologie könnte ihr Retter sein.
Für jedes Unternehmen geht es bei einer auf Deep Learning basierenden Sicherheitsstrategie darum, Benutzeraktivitäten und -gewohnheiten zu verfolgen und zu untersuchen. Da es Sicherheitsmechanismen außer Kraft setzt und manchmal keine Signale oder Warnungen auslöst, ist es schwieriger zu erkennen als herkömmliches bösartiges Verhalten, das auf ein Netzwerk abzielt. Insider-Angriffe treten beispielsweise dann auf, wenn Mitarbeiter ihren legitimen Zugriff für böswillige Zwecke nutzen, anstatt von außen in ein System einzudringen, wodurch viele Netzwerkschutzsysteme angesichts solcher Angriffe wirkungslos werden.
Eine wirksame Verteidigung gegen diese Angriffe ist die User and Entity Behavior Analysis (UEBA). Nach einer Eingewöhnungsphase kann es die typischen Verhaltensmuster von Mitarbeitern erlernen und verdächtige Aktivitäten erkennen, bei denen es sich möglicherweise um Insider-Angriffe handelt, wie beispielsweise den Zugriff auf das System zu ungewöhnlichen Zeiten, und einen Alarm auslösen.
Intrusion Detection and Prevention Systems (IDS/IPS) identifizieren verdächtige Netzwerkaktivitäten, verhindern den Zugriff von Hackern und benachrichtigen Benutzer. Sie verfügen oft über bekannte Signaturen und gängige Angriffsformate. Dies trägt zum Schutz vor Risiken wie Datenschutzverletzungen bei.
Früher wurde dieser Vorgang von ML-Algorithmen übernommen. Aufgrund dieser Algorithmen generiert das System jedoch einige Fehlalarme, was die Arbeit des Sicherheitsteams mühsam macht und die ohnehin schon übermäßige Ermüdung noch verstärkt. Mithilfe von Deep Learning, Convolutional Neural Networks und Recurrent Neural Networks (RNN) können intelligentere ID/IP-Systeme entwickelt werden, indem der Datenverkehr genauer analysiert, die Anzahl falscher Alarme reduziert und Sicherheitsteams dabei unterstützt werden, bösartige von legitimen Netzwerkaktivitäten zu unterscheiden.
Herkömmliche Malware-Lösungen verwenden wie typische Firewalls signaturbasierte Erkennungstechnologie, um Malware zu finden. Das Unternehmen unterhält eine Datenbank bekannter Risiken, die regelmäßig aktualisiert wird, um neue und aufkommende Gefahren aufzunehmen. Während dieser Ansatz gegen grundlegende Bedrohungen wirksam ist, ist er gegen komplexere Bedrohungen nicht wirksam. Deep-Learning-Algorithmen können komplexere Bedrohungen erkennen, da sie nicht auf die Erinnerung an bekannte Signaturen und typische Angriffstechniken angewiesen sind. Stattdessen macht es sich mit dem System vertraut und erkennt seltsames Verhalten, das Anzeichen für Malware oder böswillige Aktivitäten sein kann.
Um jegliche Form von Cyberkriminalität zu verhindern, ist es von entscheidender Bedeutung, die offiziellen E-Mail-Konten der Mitarbeiter zu überwachen. Phishing-Angriffe werden beispielsweise häufig dadurch durchgeführt, dass E-Mails an Mitarbeiter gesendet und vertrauliche Informationen abgefragt werden. Um solche Angriffe zu verhindern, können Deep-Learning- und Cybersicherheitssoftware eingesetzt werden. Mithilfe der Verarbeitung natürlicher Sprache können E-Mails auf verdächtige Aktivitäten überprüft werden.
Automatisierung ist von entscheidender Bedeutung für die Bekämpfung der Vielzahl von Risiken, mit denen Unternehmen zu kämpfen haben, aber einfaches maschinelles Lernen ist zu begrenzt und erfordert immer noch viel Feinabstimmung und menschliches Engagement, um die gewünschten Ergebnisse zu erzielen. Deep Learning in der Cybersicherheit geht über kontinuierliche Verbesserung und Lernen hinaus, sodass Gefahren vorhergesehen und gestoppt werden können, bevor sie eintreten.
Das obige ist der detaillierte Inhalt vonWie sich Deep Learning für die Cybersicherheit als nützlich erweisen könnte. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!