Heim  >  Artikel  >  Java  >  Java-Datenstruktur, einfach verknüpfte Liste und OJ-Fragen

Java-Datenstruktur, einfach verknüpfte Liste und OJ-Fragen

WBOY
WBOYnach vorne
2022-11-24 17:38:022135Durchsuche

Dieser Artikel vermittelt Ihnen relevantes Wissen über Java. Er stellt hauptsächlich die relevanten Inhalte zur Datenstruktur vor, einschließlich einfach verknüpfter Listen und OJ-Fragen. Ich hoffe, dass er für alle hilfreich ist.

Java-Datenstruktur, einfach verknüpfte Liste und OJ-Fragen

Empfohlenes Lernen: „Java-Video-Tutorial

1 Was ist eine verknüpfte Liste?

Eine verknüpfte Liste ist eine physisch nicht kontinuierliche Speicherstruktur. Die logische Reihenfolge der Datenelemente wird durch die Referenz-Link-Reihenfolge in der verknüpften Liste erreicht.

Für Laien ist jedes Element ein Knoten, und ein Zeigerfeld wird verwendet, um nachfolgende Knoten zu verbinden. Der erste Knoten hat keinen Vorgänger und der letzte Knoten hat keinen Nachfolger.

Die in der Praxis umzusetzenden Strukturen verknüpfter Listen sind in Kombination mit den folgenden Situationen sehr unterschiedlich:

1. Führend , nicht führend 3. Zyklisch, nicht zyklisch

Wir konzentrieren uns auf die Erläuterung von einseitig azyklisch verknüpften Listen und zweifach azyklisch verknüpften Listen. Gleichzeitig werden diese beiden auch häufiger in der schriftlichen Prüfung getestet.

2. Implementieren Sie eine einseitig azyklische verknüpfte Liste

2.1 Vereinbarung vor der Implementierung

Da jedes Element der verknüpften Liste ein Knoten ist, übernehmen wir die interne Klassenmethode und müssen auch einen Kopf definieren Knoten Die Referenz zeigt immer auf den Kopfknoten.

public class MySingleList {
    private ListNode head; //引用头节点
    // 链表每个元素是一个节点
    private class ListNode {
        private int val; //存放数据元素
        private ListNode next; //存放下一个节点地址
        //构造方法
        public ListNode(int val) {
            this.val = val;
        }
    }
}

Hinweis: Eine verknüpfte Liste hat mindestens zwei Felder, nämlich Datenfeld und Zeigerfeld. Natürlich können Sie auch mehrere Datenfelder und Zeigerfelder haben.

Wir müssen auch die folgenden allgemeinen Methoden implementieren:

public void addFirst(int data); //头插法

public void addLast(int data); //尾插法

public boolean addIndex(int index,int data); //任意位置插入,第一个数据节点为0号下标

public boolean contains(int key); //查找关键字key是否在单链表当中

public void remove(int key); //删除第一次出现关键字为key的节点

public void removeAllKey(int key); //删除所有值为key的节点

public int size(); //得到单链表的长度

public void clear(); //清空链表

2.2 addFirst-Methode

public void addFirst(int data) {
    ListNode newNode = new ListNode(data); //把传过来的值放到新的节点中
    newNode.next = this.head; //新节点的next指向头节点
    this.head = newNode; //使新节点成为头节点
}

Da head standardmäßig auf leer zeigt, hat dies keinen Einfluss auf die Ausführung dieses Codes, wenn die verknüpfte Liste null ist Du glaubst mir nicht, komm und zeichne es. 2.3 AddList-Methode Binden Sie den vorherigen Knoten des Index. Der Text hier ist nicht klar. Sie können auch die vorherige Spalte des Bloggers zur C-Sprachimplementierung nachzeichnen der Datenstruktur gibt es Illustration.

2.5 enthält die Methode

public void addLast(int data) {
    ListNode newNode = new ListNode(data);
    // 如果链表为空的情况
    if (this.head == null) {
        this.head = newNode;
        return;
    }
    // 先找到最后一个节点
    ListNode cur = this.head;
    while (cur.next != null) {
        cur = cur.next;
    }
    cur.next = newNode;
}

Die Idee ist sehr einfach: Durchlaufen Sie die verknüpfte Liste und finden Sie die Position, an der cur leer ist. Wenn true zurückgegeben wird, überlassen Sie es Ihren Freunden, das Bild zu zeichnen.

2.6 Methode zum Entfernen

//任意位置插入,第一个数据节点为0号下标
private ListNode findIndexPrevNode(int index) {
    ListNode cur = this.head;
    while (index - 1 != 0) {
        cur = cur.next;
        index--;
    }
    return cur;
}
public boolean addIndex(int index,int data) {
    // 判断index下标的有效性
    if (index < 0 || index > size()) {
        return false;
    }
    // 如果在0下标插入则是头插
    if (index == 0) {
        addFirst(data); //头插
        return true;
    }
    // 如果在末尾插入则是尾插
    if (index == size()) {
        addLast(data); //尾插
        return true;
    }

    ListNode newNode = new ListNode(data); //新节点
    // 在中间插入
    ListNode prevNode = findIndexPrevNode(index); //找到index下标的前一个节点
    newNode.next = prevNode.next; //新节点的next被改为index的位置的节点
    prevNode.next = newNode; //index位置前一个节点next被改成新节点
    return true;
}

Hier müssen wir den vorherigen Knoten des Schlüssels finden und ihn dann an den Knoten hinter dem Schlüssel binden, wenn nicht mehr auf den Knoten verwiesen wird, der dem Schlüssel entspricht, wird er automatisch recycelt .

2.7 Methode „removeAllKey“

//查找关键字key是否在单链表当中
public boolean contains(int key) {
    // 当链表为空的情况
    if (this.head == null) {
        return false;
    }
    ListNode cur = this.head;
    // 遍历列表
    while (cur != null) {
        if (cur.val == key) {
            return true; //找到了返回true
        }
        cur = cur.next;
    }
    return false; //找不到返回false
}

Schauen wir uns das erst einmal selbst an. Diese Frage wird später im Detail erläutert, wenn wir die OJ-Frage erklären.

2,8 Größe und klare Methode

Ich glaube, über diese beiden Methoden muss nicht viel gesagt werden, oder? Traverse? Den Kopfzeiger direkt auf Null setzen? Ist das nicht einfach? Ich werde es hier nicht aufschreiben, ich überlasse es Ihnen!

3. Ausführliche Anatomie der einzelnen verknüpften Listen-OJ-Frage: Das ist nicht, dass der Basketball-Typ keine Bilder zeichnet, sondern weil die vorherigen Bilder zu einfach sind durch die Kombination des Codes, aber für OJ-Fragen müssen Sie immer noch Bilder zeichnen, nachdem Sie diese Fragen gelesen haben, werden Sie sich in Datenstrukturen verlieben.

3.1 Verknüpfte Listenelemente entfernen (Quelle: LeetCode Schwierigkeitsgrad: Einfach)

Frage: Geben Sie den Kopfknoten einer verknüpften Liste

und geben Sie den

neuen Kopfknoten

zurück.

这个题我们可以用前后指针的思路来做,这样也比较通俗易懂,更适合初学者,大概的思路是这样的:我们可以定义一个cur和first的引用,如果碰到相等,也就是first.val == val,我们则让cur的next指向first的下一个节点,如果不相等,则让cur走到first的位置,最后first往后走一步,图解:

这里还没有完,如果第一个节点的值也是val呢?所以最后我们别忘了进行一个判断,那么最终的代码是这样的:

public ListNode removeElements(ListNode head, int val) {
    if (head == null) {
        return null;
    }
    ListNode cur = head;
    ListNode first = head;
    while (first != null) {
        if (first.val == val) {
            cur.next = first.next;
        } else {
            cur = first;
        }
        first = first.next;
    }
    // 判断头节点的值是否也是val
    if (head.val == val) {
        head = head.next;
    }
    return head;
}

3.2 反转链表(来源:LeetCode 难度:简单)

题目:给你单链表的头节点 head ,请你反转链表,并返回反转后的链表。 

这个题我们可以先取到头节点,后续的节点都进行头插法即可?我们取到头节点,并且先将头节点的next置空,但是这样一来,就找不到后面的节点了,所以我们还需要有一个curNext引用来记录要反转节点的下一个节点:

我们的思路是这样的:首先找到头节点的next置空,cur走到curNext位置,curNext往前走,使得cur位置的next指向头节点,头节点cur再次成为新的头节点,当curNext走到null的时候循环结束。

public ListNode reverseList(ListNode head) {
    // 空链表的情况
    if (head == null) {
        return null;
    }
    ListNode cur = head;
    ListNode curNext = cur.next;
    head.next = null;
    while (curNext != null) {
        cur = curNext;
        curNext = curNext.next;
        cur.next = head;
        head = cur;
    }
    return head;
}

3.4 链表中倒数第k个节点

题目:输入一个链表,输出该链表中倒数第k个结点。 

这个题也是很简单的一道题,可以采用前后指针法,先让first指针走k步,走完之后slow和first一起走,这样slow和first之间就相差了k步,当first为null时,slow就是倒数第k个节点,在这个过程中,我们还要判断k的合法性,如果k小于等于0?或者k大于链表的长度呢?于是我们就能写出如下的代码:

public ListNode FindKthToTail(ListNode head,int k) {
    // 判断k的合法性
    if (k <= 0 || head == null) {
        return null;
    }
    ListNode first = head;
    ListNode slow = head;
    // 先让first走k步
    while (k != 0) {
        // k的长度大于链表的长度
        if (first == null) {
            return null;
        }
        first = first.next;
        k--;
    }
    // 一起走,当first为null,slow就是倒数第k个节点
    while (first != null) {
        first = first.next;
        slow = slow.next;
    }
    return slow;
}

3.6 链表分割(来源:牛客网 难度:较难) 

题目:现有一链表的头指针 ListNode* pHead,给一定值x,编写一段代码将所有小于x的结点排在其余结点之前,且不能改变原来的数据顺序,返回重新排列后的链表的头指针。 

这个题的思路我们可以这样做,既然是按照给定的值x进行分割,那么我们设定两个盘子,盘子A放小于x的节点,盘子B放大于x的节点,最后把这两个盘子的节点连起来,放回盘子A的头节点即可!

 public ListNode partition(ListNode pHead, int x) {
        if (pHead == null) {
            return null;
        }
        ListNode headA = null;
        ListNode headB = null;
        ListNode curA = null;
        ListNode curB = null;
        ListNode cur = pHead;
        while (cur != null) {
            if (cur.val < x) {
                // 第一次放入A盘子
                if (headA == null) {
                    headA = cur;
                    curA = cur;
                } else {
                    curA.next = cur;
                    curA = cur;
                }
            } else {
                // 第一次放入B盘子
                if (headB == null) {
                    headB = cur;
                    curB = cur;
                } else {
                    curB.next = cur;
                    curB = cur;
                }
            }
            cur = cur.next;
        }
        // 如果A盘子为空
        if (headA == null) {
            return headB;
        }
        curA.next = headB;
        // 避免B盘子尾节点形成环
        if (headB != null) {
            curB.next = null;
        }
        return headA;
    }

3.7 链表的回文结构(来源:LeetCode 难度:较难) 

题目:对于一个链表,请设计一个时间复杂度为O(n),额外空间复杂度为O(1)的算法,判断其是否为回文结构。

给定一个链表的头指针A,请返回一个bool值,代表其是否为回文结构。保证链表长度小于等于900。

这个题有要求的,要求空间复杂度为O(1),并且还得在O(n)的时间复杂度下,那我们就原地解决这个题,我们可以分为三个步骤,首先找到中间节点,然后把中间节点往后的节点进行反转,最后左右两个指针同时往中间走。如果光看下面代码看不懂,可以结合着代码画图才能理解更透彻哦!

public boolean chkPalindrome(ListNode A) {
    if (A == null) {
        return false;
    }
    // 只有一个节点的情况
    if (A.next == null) {
        return true;
    }
    // 首先找到中间节点
    ListNode first = A;
    ListNode slow = A;
    while (first != null && first.next != null) {
        first = first.next.next;
        slow = slow.next;
    }
    // 走到这,slow是链表的中间节点,采用头插法反转slow后续的节点
    first = slow.next;
    ListNode cur = slow;
    while (first != null) {
        cur = first;
        first = first.next;
        cur.next = slow; //链接前一个节点
        slow = cur; //更新头节点的位置
    }
    // 走到这,反转完毕,cur指向最后一个节点,让slow等于A,往中间找
    slow = A;
    while (slow != cur) {
        if (slow.val != cur.val) {
            return false;
        }
        // 偶数的情况下需要特殊判断
        if (slow.next == cur) {
            return true;
        }
        slow = slow.next;
        cur = cur.next;
    }
    return true;
}

3.8 相交链表(来源:LeetCode 难度:简单) 

题目:给你两个单链表的头节点 headA 和 headB ,请你找出并返回两个单链表相交的起始节点。如果两个链表不存在相交节点,返回 null 。

题目数据 保证 整个链式结构中不存在环。

注意,函数返回结果后,链表必须 保持其原始结构 。

这个题我们可以这样做,长链表先走两个链表的长度差的步数,因为相交之后的节点都是一样的个数,所以走了差值后,就两个链表一起往后走,相等了则就是相交节点。

public ListNode getIntersectionNode(ListNode headA, ListNode headB) {
    if (headA == null || headB == null) {
        return null;
    }
    ListNode longList = headA; //longList始终记录长的链表
    ListNode shortList = headB;
    // 分别求出两个链表的长度
    int lenA = 0;
    int lenB = 0;
    ListNode cur = headA;
    while (cur != null) {
        lenA++;
        cur = cur.next;
    }
    cur = headB;
    while (cur != null) {
        lenB++;
        cur = cur.next;
    }
    int len = lenA - lenB;
    // 如果B链表长于A链表
    if (len < 0) {
        // 修正相差长度
        len = lenB - lenA;
        longList = headB; //longList始终记录长的链表
        shortList = headA;
    }
    // 让长链表先走差值len步,然后同步走,相等了即为相交节点
    while (len != 0) {
        longList = longList.next;
        len--;
    }
    while (longList != shortList) {
        longList = longList.next;
        shortList = shortList.next;
    }
    // 如果两个链表走到了null,则没有中间节点返回null,如果有,返回任意一个即可
    return longList;
}

推荐学习:《java视频教程

Das obige ist der detaillierte Inhalt vonJava-Datenstruktur, einfach verknüpfte Liste und OJ-Fragen. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Stellungnahme:
Dieser Artikel ist reproduziert unter:csdn.net. Bei Verstößen wenden Sie sich bitte an admin@php.cn löschen