搜索
首页科技周边人工智能用MoE横扫99个子任务!浙大等提出全新通用机器人策略GeRM

多任务机器人学习在应对多样化和复杂情景方面具有重要意义。然而,当前的方法受到性能问题和收集训练数据集的困难的限制。

这篇论文提出了GeRM(通用机器人模型),研究人员利用离线强化学习来优化数据利用策略,从演示和次优数据中学习,从而超越了人类演示的局限性。

用MoE横扫99个子任务!浙大等提出全新通用机器人策略GeRM

作者:宋文轩,赵晗,丁鹏翔,崔灿,吕尚可,范亚凝,王东林

单位:西湖大学、浙江大学

论文地址:https://arxiv.org/abs/2403.13358

项目地址:https://songwxuan.github.io/GeRM/

之后采用基于Transformer的视觉-语言-动作模型来处理多模态输入并输出动作。

通过引入专家混合结构,GeRM实现了更快的推理速度和更高的整体模型容量,从而解决了强化学习参数量受限的问题,提高了多任务学习中的模型性能,同时控制了计算成本。

通过一系列实验证明,GeRM在所有任务中均优于其他方法,同时验证了其在训练和推理过程中的效率。

此外,研究人员还提供了QUARD-Auto数据集以支持训练,该数据集的构建遵循文中提出的数据自动化收集的新范式,该方法可以降低收集机器人数据的成本,推动多任务学习社区的进步。

主要贡献:

1. 首次提出了用于四足强化学习的混合专家模型,其在混合质量的数据上进行训练,从而具备习得最优策略的潜力。

2. 与现有方法相比,GeRM在只激活自身1/2参数的情况下展现出更高的成功率,激活了涌现能力,同时在训练过程中展现了更优的数据利用策略。

3.提出了一个全自动机器人数据集收集的范式,并收集了一个大规模开源数据集。

方法

GeRM网络结构如图1所示,包含示范数据和失败数据的视觉-语言输入,分别经过编码器和tokenizer后输入到8层混合专家结构的decoder中,并生成动作token,最终转化为离散的机器人动作数据并通过底层策略部署到机器人上,此外我们用强化学习的方式进行训练。

用MoE横扫99个子任务!浙大等提出全新通用机器人策略GeRM

图1 GeRM网络结构图

GeRM Decoder是一个包含 Transformer Decoder架构模型,其中前馈网络(FFN)从一组 8 个不同的专家网络中选择。

在每一层,对于每一个标记,门控网络选择两个专家来处理token,并将它们的输出加权组合。

不同的专家擅长不同的任务/不同的动作维度,以解决不同场景中的问题,从而学习跨多个任务的通用模型。该架构扩大了网络参数量,同时保持计算成本基本不变。

用MoE横扫99个子任务!浙大等提出全新通用机器人策略GeRM

图2 Decoder结构图

我们提出了一个自动的范式来收集机器人多模态数据。通过这种方式,我们构建了一个大规模的机器人数据集QUARD-Auto,其中包含演示和次优数据的组合。它包括5个任务和99个子任务,总共有257k条轨迹。我们将进行开源以促进机器人社区发展。

用MoE横扫99个子任务!浙大等提出全新通用机器人策略GeRM

表1 数据集介绍

用MoE横扫99个子任务!浙大等提出全新通用机器人策略GeRM

图3 数据量统计

实验

我们进行了一系列全面而可靠的实验,涵盖了所有 99 个子任务,每个子任务进行了 400 条轨迹的精心测试。

如表1所示,GeRM在所有任务中具有最高的成功率。与 RT-1 和其他GeRM 的变体相比,它有效地从混合质量的数据中学习,优于其他方法,并在多任务中展现出优越的能力。与此同时,MoE 模块通过在推理时激活部分参数来平衡计算成本和性能。

用MoE横扫99个子任务!浙大等提出全新通用机器人策略GeRM

表2 多任务对比实验

GeRM表现出令人称赞的训练效率。与其他方法相比,GeRM 仅需极少的batch就获得了极低的Loss和较高的成功率,凸显了GeRM优化数据利用策略的能力。

用MoE横扫99个子任务!浙大等提出全新通用机器人策略GeRM

图4 成功率/Loss变化曲线

GeRM 在动态自适应路径规划方面展现出了涌现能力。如视频所示,四足机器人在初始位置视野受限,难以确定移动方向。为了避开障碍物,它随机选择向左转。

随后,在遇到错误的视觉输入后,机器人执行了大幅度的重新定向,以与原始视野之外的正确目标对齐。然后,它继续向目的地驶去,最终完成任务。

值得注意的是,这样的轨迹不属于我们的训练数据集分布之内。这表明 GeRM 在场景背景下的动态自适应路径规划方面具有涌现能力,即它能够根据视觉感知进行决策、规划未来路径,并根据需要改变下一步行动。

用MoE横扫99个子任务!浙大等提出全新通用机器人策略GeRM

图5 涌现能力

以上是用MoE横扫99个子任务!浙大等提出全新通用机器人策略GeRM的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文转载于:51CTO.COM。如有侵权,请联系admin@php.cn删除
外推指南外推指南Apr 15, 2025 am 11:38 AM

介绍 假设有一个农民每天在几周内观察农作物的进展。他研究了增长率,并开始思考他的植物在几周内可以生长的高度。从Th

软AI的兴起及其对当今企业的意义软AI的兴起及其对当今企业的意义Apr 15, 2025 am 11:36 AM

软AI(被定义为AI系统,旨在使用近似推理,模式识别和灵活的决策执行特定的狭窄任务 - 试图通过拥抱歧义来模仿类似人类的思维。 但是这对业务意味着什么

为AI前沿的不断发展的安全框架为AI前沿的不断发展的安全框架Apr 15, 2025 am 11:34 AM

答案很明确 - 只是云计算需要向云本地安全工具转变,AI需要专门为AI独特需求而设计的新型安全解决方案。 云计算和安全课程的兴起 在

生成AI的3种方法放大了企业家:当心平均值!生成AI的3种方法放大了企业家:当心平均值!Apr 15, 2025 am 11:33 AM

企业家,并使用AI和Generative AI来改善其业务。同时,重要的是要记住生成的AI,就像所有技术一样,都是一个放大器 - 使得伟大和平庸,更糟。严格的2024研究O

Andrew Ng的新简短课程Andrew Ng的新简短课程Apr 15, 2025 am 11:32 AM

解锁嵌入模型的力量:深入研究安德鲁·NG的新课程 想象一个未来,机器可以完全准确地理解和回答您的问题。 这不是科幻小说;多亏了AI的进步,它已成为R

大语言模型(LLM)中的幻觉是不可避免的吗?大语言模型(LLM)中的幻觉是不可避免的吗?Apr 15, 2025 am 11:31 AM

大型语言模型(LLM)和不可避免的幻觉问题 您可能使用了诸如Chatgpt,Claude和Gemini之类的AI模型。 这些都是大型语言模型(LLM)的示例,在大规模文本数据集上训练的功能强大的AI系统

60%的问题 -  AI搜索如何消耗您的流量60%的问题 - AI搜索如何消耗您的流量Apr 15, 2025 am 11:28 AM

最近的研究表明,根据行业和搜索类型,AI概述可能导致有机交通下降15-64%。这种根本性的变化导致营销人员重新考虑其在数字可见性方面的整个策略。 新的

麻省理工学院媒体实验室将人类蓬勃发展成为AI R&D的核心麻省理工学院媒体实验室将人类蓬勃发展成为AI R&D的核心Apr 15, 2025 am 11:26 AM

埃隆大学(Elon University)想象的数字未来中心的最新报告对近300名全球技术专家进行了调查。由此产生的报告“ 2035年成为人类”,得出的结论是,大多数人担心AI系统加深的采用

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
4 周前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
4 周前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
4 周前By尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解锁Myrise中的所有内容
1 个月前By尊渡假赌尊渡假赌尊渡假赌

热工具

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

将Eclipse与SAP NetWeaver应用服务器集成。

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

Atom编辑器mac版下载

Atom编辑器mac版下载

最流行的的开源编辑器

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

EditPlus 中文破解版

EditPlus 中文破解版

体积小,语法高亮,不支持代码提示功能