搜索
首页科技周边人工智能长文本杀不死RAG:SQL+向量驱动大模型和大数据新范式,MyScale AI数据库正式开源

大模型和 AI 数据库双剑合璧,成为大模型降本增效,大数据真正智能的制胜法宝。

长文本杀不死RAG:SQL+向量驱动大模型和大数据新范式,MyScale AI数据库正式开源

大模型(LLM)的浪潮已经涌动一年多了,尤其是以 GPT-4、Gemini-1.5、Claude-3 等为代表的模型你方唱罢我登场,成为当之无愧的风口。在 LLM 这条赛道上,有的研究专注于增加模型参数,有的疯狂卷多模态…… 这当中,LLM 处理上下文长度的能力成为了评估模型的一个重要指标,更强的上下文意味着模型拥有更强的检索性能。例如有些模型一口气可以处理高达 100 万 token 的能力让不少研究者开始思考,RAG (Retrieval-Augmented Generation,检索增强生成)方法还有存在的必要吗?

有人认为 RAG 要被长上下文模型杀死了,但这种观点遭到了很多研究者和架构师的反驳。他们认为一方面数据结构复杂、定期变化,并且很多数据具有重要的时间维度,这些数据对于 LLM 来说可能太复杂。另一方面,企业、行业的海量异构数据,都放到上下文窗口中也不现实。而大模型和 AI 数据库结合,给生成式 AI 系统注入专业、精准和实时的信息,大幅降低了幻觉,并提高了系统的实用性。同时,Data-centric LLM 的方法也可以利用 AI 数据库海量数据管理、查询的能力,大幅降低大模型训练、微调的开销,并支持在系统不同场景的小样本调优。总结来说,大模型和 AI 数据库双剑合璧,既给大模型降本增效,又让大数据真正实现智能

历经数年开发和迭代,MyScaleDB 终于开源

RAG 的出现使得 LLM 能从大规模的知识库中精确地抽取信息,并生成实时、专业、富有洞察力的答案。伴随而来的是 RAG 系统的核心功能向量数据库也得到了迅速发展,按照向量数据库的设计理念我们可以将其大致分为三类:专用向量数据库,关键字和向量结合的检索系统,以及 SQL 向量数据库。

  • 以 Pinecone/Weaviate/Milvus 为代表的专用向量数据库,一开始即为向量检索设计打造,向量检索性能出色,不过通用的数据管理功能较弱。
  • 以 Elasticsearch/OpenSearch 为代表的关键字和向量检索系统,因其完善的关键字检索功能得到广泛生产应用,不过系统资源占用较多,关键字与向量的联合查询精度和性能不尽人如意。
  • 以 pgvector(PostgreSQL 的向量搜索插件)和 MyScale AI 数据库为代表的 SQL 向量数据库,基于 SQL 并且数据管理功能强大。不过因为 PostgreSQL 行存的劣势和向量算法的局限性,pgvector 在复杂向量查询中精度较低。
 
MyScale AI 数据库(MyScaleDB)基于高性能的 SQL 列式存储数据库打造,自研高性能和高数据密度的向量索引算法,并针对 SQL 和向量的联合查询对检索和存储引擎进行了深度的研发和优化,是全球第一个综合性能和性价比大幅超越了专用向量数据库的 SQL 向量数据库产品

得益于 SQL 数据库在海量结构化数据场景长期的打磨,MyScaleDB 同时支持海量向量和结构化数据,包括字符串、JSON、空间、时序等多种数据类型的高效存储和查询,并将在近期推出功能强大的倒排表和关键字检索功能,进一步提高 RAG 系统的精度并替代 Elasticsearch 等系统。

长文本杀不死RAG:SQL+向量驱动大模型和大数据新范式,MyScale AI数据库正式开源

长文本杀不死RAG:SQL+向量驱动大模型和大数据新范式,MyScale AI数据库正式开源

经过近 6 年的开发和数次版本迭代,MyScaleDB 已于近期开源,欢迎所有开发者和企业用户在 GitHub 上 Star,并开启使用 SQL 构建生产级 AI 应用的新玩法!

项目地址:https://github.com/myscale/myscaledb
 
完全兼容 SQL,精度提升、成本降低

借助完善的 SQL 数据管理能力,强大高效的结构化、向量和异构数据存储和查询能力,MyScaleDB 有望成为第一款真正面向大模型和大数据的 AI 数据库

SQL 和向量的原生兼容性

自从 SQL 诞生半个世纪以来,尽管其中经历了 NoSQL、大数据等浪潮,不断进化的 SQL 数据库还是占据了数据管理市场主要份额,甚至 Elasticsearch、Spark 等检索和大数据系统也陆续支持了 SQL 接口。而专用的向量数据库尽管为向量做了优化和系统设计,但其查询接口通常缺乏规范性,没有高级的查询语言。这导致了接口的泛化能力较弱,例如 Pinecone 的查询接口甚至不包括指定要检索的字段,更不用说分页、聚合等数据库常见的功能。

接口的泛化能力弱意味着其变化频繁,增加了学习成本。MyScale 团队则认为,经过系统性优化的 SQL 和向量系统是可以既保持完整的 SQL 支持,又保证向量检索高性能的,而他们的开源评测的结果已经充分论证了这一点。

在实际复杂 AI 应用场景中,SQL 和向量结合可以极大增加数据建模的灵活性,并简化开发流程。例如 MyScale 团队与北京科学智能研究院合作的 Science Navigator 项目中,利用 MyScaleDB 对于海量的科学文献数据做检索和智能问答,其主要的 SQL 表结构就有 10 多个,其中多张表结构建立了向量和倒排表索引,并利用主键和外键做了关联。系统在实际查询中,也会涉及结构化、向量和关键字数据的联合查询,以及几张表的关联查询。在专用的向量数据库中这些建模和关联是难以实现的,也会导致最终的系统迭代缓慢、查询低效和维护困难。

长文本杀不死RAG:SQL+向量驱动大模型和大数据新范式,MyScale AI数据库正式开源

                           Science Navigator 主要表结构示意图(加粗体的列建立了向量索引或倒排索引)
 
支持结构化、向量和关键字等数据联合查询

在实际 RAG 系统中,检索的精度和效果是制约其落地的主要瓶颈。这需要 AI 数据库高效支持结构化、向量和关键字等数据联合查询,综合提高检索精度。

例如在金融场景中,用户需要针对文档库查询 “某公司 2023 年全球各项业务的收入情况如何?”,“某公司”,“2023 年” 等结构化元信息并不能被向量很好的抓取,甚至不一定在对应的段落中有直接的体现。直接在全库上执行向量检索会得到大量的干扰信息,并降低系统最终的准确性。另一方面,公司名称,年份等通常是可以作为文档的元信息被获取的,我们可以将 WHERE year=2023 AND company ILIKE "%%" 作为向量查询的过滤条件,从而精准的定位到相关信息,大幅提升了系统的可靠性。在金融、制造业、科研等场景中,MyScale 团队都观察到异构数据建模和关联查询的威力,很多场景下甚至有 60% 精度到 90% 的提升。
 
尽管传统的数据库产品都已经陆续意识到了向量查询在 AI 时代的重要性,并开始在数据库中增加向量能力,其联合查询的精度仍然存在显著的问题。例如,在过滤查询的场景下,Elasticsearch 在过滤比例为 0.1 时,QPS 会降到只有 5 左右,而 PostgresSQL(使用 pgvector 插件)在过滤比例是 0.01 时,检索精度只有 50% 左右,不稳定的查询精度 / 性能极大制约了其应用的场景。而 MyScale 仅使用了 pgvector 36% 的成本和 ElasticSearch 12% 的成本,就能够在各种不同过滤比例的场景下都实现高性能和高精度的查询。

长文本杀不死RAG:SQL+向量驱动大模型和大数据新范式,MyScale AI数据库正式开源

                                 在不同过滤比例场景下,MyScale 都用低成本实现了高精度和高性能查询

真实场景下性能和成本的平衡

正因为向量检索在大模型应用中的重要性和高关注度,越来越多的团队投入了向量数据库这个赛道。大家一开始的关注点都是努力提升纯向量搜索场景下的 QPS,不过纯向量搜索是远远不够的!在实战的场景中,数据建模、查询的灵活性和精准度以及平衡数据密度、查询性能和成本是更为重要的议题。

在 RAG 场景中,纯向量查询性能有 10x 的过剩,向量占用资源庞大,联合查询功能缺乏、性能和精度不佳往往是当下专有向量数据库的常态。MyScaleDB 致力于在真实海量数据场景下 AI 数据库的综合性能提升,其推出的 MyScale Vector Database Benchmark 也是业内首个在五百万向量规模,不同查询场景下比较主流向量数据库系统综合性能、性价比的开源评测系统,欢迎大家关注和提 issue。MyScale 团队表示,AI 数据库在真实应用场景下还存在很大的优化空间,他们也希望在实践中不断打磨产品并完善评测系统。

MyScale Vector Database Benchmark 项目地址:
https://github.com/myscale/vector-db-benchmark

展望:AI 数据库支撑的大模型 大数据 Agent 平台

机器学习 大数据驱动了互联网和上一代信息系统的成功,而在大模型的时代背景下,MyScale 团队也致力于提出新一代的大模型 大数据方案。以高性能的 SQL 向量数据库为坚实的支撑,MyScaleDB 提供了大规模数据处理、知识查询、可观测性、数据分析和小样本学习的关键能力,构建了 AI 和数据闭环,成为下一代大模型 大数据 Agent 平台的关键基座。MyScale 团队已经在科研、金融、工业、医疗等领域探索这套方案的落地。

长文本杀不死RAG:SQL+向量驱动大模型和大数据新范式,MyScale AI数据库正式开源

随着技术的快速发展,某种意义上的通用人工智能 (AGI) 有望在未来 5-10 年内出现。关于这个问题,我们不禁要思考:是需要一个静态、虚拟且与人类竞争的大模型,还是其他更加全面的解决方案?数据无疑是连接大模型、世界与用户的重要纽带,MyScale 团队的愿景是将大模型和大数据有机结合,打造更加专业、实时、高效协作,同时亦充满人性温度和价值的 AI 系统。

以上是长文本杀不死RAG:SQL+向量驱动大模型和大数据新范式,MyScale AI数据库正式开源的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文转载于:机器之心。如有侵权,请联系admin@php.cn删除
外推指南外推指南Apr 15, 2025 am 11:38 AM

介绍 假设有一个农民每天在几周内观察农作物的进展。他研究了增长率,并开始思考他的植物在几周内可以生长的高度。从Th

软AI的兴起及其对当今企业的意义软AI的兴起及其对当今企业的意义Apr 15, 2025 am 11:36 AM

软AI(被定义为AI系统,旨在使用近似推理,模式识别和灵活的决策执行特定的狭窄任务 - 试图通过拥抱歧义来模仿类似人类的思维。 但是这对业务意味着什么

为AI前沿的不断发展的安全框架为AI前沿的不断发展的安全框架Apr 15, 2025 am 11:34 AM

答案很明确 - 只是云计算需要向云本地安全工具转变,AI需要专门为AI独特需求而设计的新型安全解决方案。 云计算和安全课程的兴起 在

生成AI的3种方法放大了企业家:当心平均值!生成AI的3种方法放大了企业家:当心平均值!Apr 15, 2025 am 11:33 AM

企业家,并使用AI和Generative AI来改善其业务。同时,重要的是要记住生成的AI,就像所有技术一样,都是一个放大器 - 使得伟大和平庸,更糟。严格的2024研究O

Andrew Ng的新简短课程Andrew Ng的新简短课程Apr 15, 2025 am 11:32 AM

解锁嵌入模型的力量:深入研究安德鲁·NG的新课程 想象一个未来,机器可以完全准确地理解和回答您的问题。 这不是科幻小说;多亏了AI的进步,它已成为R

大语言模型(LLM)中的幻觉是不可避免的吗?大语言模型(LLM)中的幻觉是不可避免的吗?Apr 15, 2025 am 11:31 AM

大型语言模型(LLM)和不可避免的幻觉问题 您可能使用了诸如Chatgpt,Claude和Gemini之类的AI模型。 这些都是大型语言模型(LLM)的示例,在大规模文本数据集上训练的功能强大的AI系统

60%的问题 -  AI搜索如何消耗您的流量60%的问题 - AI搜索如何消耗您的流量Apr 15, 2025 am 11:28 AM

最近的研究表明,根据行业和搜索类型,AI概述可能导致有机交通下降15-64%。这种根本性的变化导致营销人员重新考虑其在数字可见性方面的整个策略。 新的

麻省理工学院媒体实验室将人类蓬勃发展成为AI R&D的核心麻省理工学院媒体实验室将人类蓬勃发展成为AI R&D的核心Apr 15, 2025 am 11:26 AM

埃隆大学(Elon University)想象的数字未来中心的最新报告对近300名全球技术专家进行了调查。由此产生的报告“ 2035年成为人类”,得出的结论是,大多数人担心AI系统加深的采用

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
4 周前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
4 周前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
4 周前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.聊天命令以及如何使用它们
4 周前By尊渡假赌尊渡假赌尊渡假赌

热工具

DVWA

DVWA

Damn Vulnerable Web App (DVWA) 是一个PHP/MySQL的Web应用程序,非常容易受到攻击。它的主要目标是成为安全专业人员在合法环境中测试自己的技能和工具的辅助工具,帮助Web开发人员更好地理解保护Web应用程序的过程,并帮助教师/学生在课堂环境中教授/学习Web应用程序安全。DVWA的目标是通过简单直接的界面练习一些最常见的Web漏洞,难度各不相同。请注意,该软件中

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

安全考试浏览器

安全考试浏览器

Safe Exam Browser是一个安全的浏览器环境,用于安全地进行在线考试。该软件将任何计算机变成一个安全的工作站。它控制对任何实用工具的访问,并防止学生使用未经授权的资源。

mPDF

mPDF

mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),

螳螂BT

螳螂BT

Mantis是一个易于部署的基于Web的缺陷跟踪工具,用于帮助产品缺陷跟踪。它需要PHP、MySQL和一个Web服务器。请查看我们的演示和托管服务。