搜索
首页科技周边人工智能仅需200M参数,零样本性能超越有监督!谷歌发布时序预测基础模型TimesFM

时间序列预测在各个领域中起着重要作用,例如零售、金融、制造业、医疗保健和自然科学等。在零售行业中,通过提高需求预测的准确性,可以有效降低库存成本并增加收入。这意味着企业能够更好地满足客户需求,减少库存积压和损失,同时提高销售额和利润。因此,时间序列预测在零售领域中具有重要的价值,能够为企业带来实质

深度学习(DL)模型在“多变量时间序列预测”任务中占据主导地位,在各种比赛和实际应用中展现出色的性能。

与此同时,自然语言处理(NLP)任务中的大型基础语言模型也取得了显着进展,有效提升了翻译、检索增强生成、代码补全等任务的性能。

NLP模型的训练依赖于海量文本数据,其中数据来源多种多样,包括爬虫、开源代码等,训练后的模型能够识别语言中的模式,并具备零样本学习的能力:比如说把大模型用在检索任务时,模型可以回答有关当前事件的问题并对其进行总结。

尽管基于深度学习的预测器在许多方面优于传统方法,包括降低训练和推理成本,但仍然存在一些挑战需要克服:

许多深度学习模型要经过长时间的训练和验证才能在新的时间序列上进行测试。相比之下,时间序列预测的基础模型具备"开箱即用预测"功能,无需额外训练即可应用于未知时间序列数据。这种特性让用户能够专注于改进零售需求规划等实际下游任务的预测工作。

Google Research的研究人员最近提出了一个名为TimesFM的时序预测基础模型,在1000亿个真实世界时间点上进行了预训练。与目前最新的大型语言模型(LLMs)相比,TimesFM的规模要小得多,仅包含200M参数。

仅需200M参数,零样本性能超越有监督!谷歌发布时序预测基础模型TimesFM

论文链接:https://arxiv.org/pdf/2310.10688.pdf

实验结果表明,尽管规模较小,TimesFM在各个领域和时间尺度上的不同未经训练的数据集中展现出了令人惊讶的「零样本性能」,接近于明确经过训练、最先进的监督方法在这些数据集上的表现。

研究人员计划今年晚些时候在Google Cloud Vertex AI中为外部客户提供TimesFM模型。

基础模型TimesFM

LLMs通常以仅解码器(decoder-only)的方式进行训练,包括三个步骤:

1. 文本被分解为称为token的子词(subwords)

2. tokens被馈送到堆叠的causal Transformer层,并生成与每个输入token对应的输出,需要注意的是,该层无法处理没输入的token,即future tokens

3. 对应于第i个token的输出总结了来自先前token的所有信息,并预测第(i+1)个token

在推理期间,LLM每次生成一个token的输出。

例如,当输入提示「法国的首都是哪里?」(What is the capital of France?)时,模型可能会生成token为「The」,然后以该提示为条件生成下一个token「首都」(captial)等,直到模型生成完整的答案:「法国的首都是巴黎」(The capital of France is Paris)。

时间序列预测的基础模型应该适应可变的上下文(模型观察到的内容)和范围(查询模型预测的内容)长度,同时具有足够的能力来编码来自大型预训练数据集的所有模式(patterns)。

仅需200M参数,零样本性能超越有监督!谷歌发布时序预测基础模型TimesFM

与LLMs类似,研究人员使用堆叠的Transformer层(自注意力和前馈层)作为TimesFM模型的主要构建块;在时间序列预测的背景下,把一个patch(一组连续的时间点)作为一个token,思路来源于最近的long-horizon forecasting工作:具体任务是预测在堆叠的Transformer层的末尾处,针对给定第i个输出来预测第(i+1)个时间点patch

但TimesFM与语言模型有几个关键的区别:

1. 模型需要一个具有残差连接的多层感知器块,将时间序列的patch转换为token,其可以与位置编码(PE)一起沿着输入到Transformer层。为此,我们使用类似于我们以前在长期预测中的工作的残差块。

2. 来自堆叠的Transformer的输出token可以用于预测比输入patch长度更长的后续时间点的长度,即,输出patch长度可以大于输入patch长度。

假设,长度为512个时间点的时间序列被用于训练具有「输入patch长度32」和「输出patch长度128」的TimesFM模型时:

在训练期间,模型同时被训练为使用前32个时间点来预测接下来的128个时间点,使用前64个时间点来预测时间点65至192,使用前96个时间点来预测时间点97至224等等。

假设输入数据为长度为256的时间序列,并且其任务是预测未来的接下来的256个时间点,模型首先生成时间点257至384的未来预测,然后以初始256长度输入加上生成的输出为条件来生成时间点385至512。

另一方面,如果在模型中,输出patch长度等于输入patch长度32,那么对于相同的任务,模型经历八次生成步骤而非2次,增加了错误累积的风险,因此在实验结果中可以看到,更长的输出patch长度会带来更好的长期预测性能。

预训练数据

就像LLMs可以通过更多token变得更好一样,TimesFM需要大量合法的时间序列数据来学习和改进;研究人员花了大量的时间来创建和评估训练数据集,发现两个比较好的方法:

合成数据有助于基础(Synthetic data helps with the basics)

可以使用统计模型或物理模拟生成有意义的合成时间序列数据,基本的时间模式可以引导模型学习时间序列预测的语法。

真实世界的数据增加了真实世界的感觉(Real-world data adds real-world flavor)

研究人员梳理了可用的公共时间序列数据集,并有选择地将1000亿个时间点的大型语料库放在一起。

在数据集中,有Google趋势和维基百科的页面浏览量,跟踪用户感兴趣的内容,并且很好地反映了许多其他真实世界时间序列的趋势和模式,有助于TimesFM理解更大的图景,可以针对「训练期间没见过的、特定领域上下文」提升泛化性能。

零样本评估结果

研究人员使用常用的时间序列基准,针对训练期间未见过的数据对TimesFM进行零样本评估,可以观察到TimesFM的性能优于大多数统计方法,如ARIMA,ETS,并且可以匹配或优于强大的DL模型,如DeepAR,PatchTST,这些模型已经在目标时间序列上进行了明确的训练。

研究人员使用Monash Forecasting Archive来评估TimesFM的开箱即用性能,该数据集包含来自各个领域的数万个时间序列,如交通、天气和需求预测,覆盖频率从几分钟到每年的数据。

根据现有文献,研究人员检查了适当缩放的平均绝对误差(MAE),以便在数据集上取平均值。

可以看到,zero-shot(ZS)TimesFM比大多数监督方法都要好,包括最近的深度学习模型。还对比了TimesFM和GPT-3.5使用llmtime(ZS)提出的特定提示技术进行预测,结果证明了TimesFM的性能优于llmtime(ZS)

仅需200M参数,零样本性能超越有监督!谷歌发布时序预测基础模型TimesFM

在Monash数据集上,TimesFM(ZS)与其他有监督和零样本方法的比例MAE(越低越好)

大多数Monash数据集都是短期或中期的,也就是说预测长度不会太长;研究人员还测试了TimesFM对常用基准长期预测对最先进的基线PatchTST(和其他长期预测基线)。

研究人员绘制了ETT数据集上的MAE,用于预测未来96和192个时间点的任务,在每个数据集的最后一个测试窗口上计算指标。

仅需200M参数,零样本性能超越有监督!谷歌发布时序预测基础模型TimesFM

TimesFM(ZS)的最后一个窗口MAE(越低越好)相对于ETT数据集上的llmtime(ZS)和长期预测基线

可以看到,TimesFM不仅超过了llmtime(ZS)的性能,而且与在相应数据集上显式训练的有监督PatchTST模型的性能相匹配。

结论

研究人员使用1000亿真实的世界时间点的大型预训练语料库训练了一个仅用于解码器的基础模型,其中大部分是来自Google趋势的搜索兴趣时间序列数据和维基百科的页面浏览量。

结果表明,即使是一个相对较小的200 M参数预训练模型,使用TimesFM架构,在各种公共基准测试(不同的领域和粒度)中都展现出相当好的零样本性能。

以上是仅需200M参数,零样本性能超越有监督!谷歌发布时序预测基础模型TimesFM的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文转载于:51CTO.COM。如有侵权,请联系admin@php.cn删除
从摩擦到流:AI如何重塑法律工作从摩擦到流:AI如何重塑法律工作May 09, 2025 am 11:29 AM

法律技术革命正在获得动力,促使法律专业人员积极采用AI解决方案。 对于那些旨在保持竞争力的人来说,被动抵抗不再是可行的选择。 为什么技术采用至关重要? 法律专业人员

这就是AI对您的看法,对您的了解这就是AI对您的看法,对您的了解May 09, 2025 am 11:24 AM

许多人认为与AI的互动是匿名的,与人类交流形成了鲜明的对比。 但是,AI在每次聊天期间都会积极介绍用户。 每个单词的每个提示都经过分析和分类。让我们探索AI Revo的这一关键方面

建立蓬勃发展的AI-Ready企业文化的7个步骤建立蓬勃发展的AI-Ready企业文化的7个步骤May 09, 2025 am 11:23 AM

成功的人工智能战略,离不开强大的企业文化支撑。正如彼得·德鲁克所言,企业运作依赖于人,人工智能的成功也同样如此。 对于积极拥抱人工智能的组织而言,构建适应AI的企业文化至关重要,它甚至决定着AI战略的成败。 西蒙诺咨询公司(West Monroe)近期发布了构建蓬勃发展的AI友好型企业文化的实用指南,以下是一些关键要点: 1. 明确AI的成功模式: 首先,要对AI如何赋能业务有清晰的愿景。理想的AI运作文化,能够实现人与AI系统之间工作流程的自然融合。AI擅长某些任务,而人类则擅长创造力、判

Netflix New Scroll,Meta AI的游戏规则改变者,Neuralink价值85亿美元Netflix New Scroll,Meta AI的游戏规则改变者,Neuralink价值85亿美元May 09, 2025 am 11:22 AM

Meta升级AI助手应用,可穿戴式AI时代来临!这款旨在与ChatGPT竞争的应用,提供文本、语音交互、图像生成和网络搜索等标准AI功能,但现在首次增加了地理位置功能。这意味着Meta AI在回答你的问题时,知道你的位置和正在查看的内容。它利用你的兴趣、位置、个人资料和活动信息,提供最新的情境信息,这在以前是无法实现的。该应用还支持实时翻译,这彻底改变了Ray-Ban眼镜上的AI体验,使其实用性大大提升。 对外国电影征收关税是对媒体和文化的赤裸裸的权力行使。如果实施,这将加速向AI和虚拟制作的

今天采取这些步骤以保护自己免受AI网络犯罪的侵害今天采取这些步骤以保护自己免受AI网络犯罪的侵害May 09, 2025 am 11:19 AM

人工智能正在彻底改变网络犯罪领域,这迫使我们必须学习新的防御技巧。网络罪犯日益利用深度伪造和智能网络攻击等强大的人工智能技术进行欺诈和破坏,其规模前所未有。据报道,87%的全球企业在过去一年中都成为人工智能网络犯罪的目标。 那么,我们该如何避免成为这波智能犯罪的受害者呢?让我们探讨如何在个人和组织层面识别风险并采取防护措施。 网络罪犯如何利用人工智能 随着技术的进步,犯罪分子不断寻找新的方法来攻击个人、企业和政府。人工智能的广泛应用可能是最新的一个方面,但其潜在危害是前所未有的。 特别是,人工智

共生舞蹈:人工和自然感知的循环共生舞蹈:人工和自然感知的循环May 09, 2025 am 11:13 AM

最好将人工智能(AI)与人类智力(NI)之间的复杂关系理解为反馈循环。 人类创建AI,对人类活动产生的数据进行培训,以增强或复制人类能力。 这个AI

AI最大的秘密 - 创作者不了解,专家分裂AI最大的秘密 - 创作者不了解,专家分裂May 09, 2025 am 11:09 AM

Anthropic最近的声明强调了关于尖端AI模型缺乏了解,引发了专家之间的激烈辩论。 这是一个真正的技术危机,还是仅仅是通往更秘密的道路上的临时障碍

Sarvam AI的Bulbul-V2:印度最佳TTS模型Sarvam AI的Bulbul-V2:印度最佳TTS模型May 09, 2025 am 10:52 AM

印度是一个多元化的国家,具有丰富的语言,使整个地区的无缝沟通成为持续的挑战。但是,Sarvam的Bulbul-V2正在帮助弥合其高级文本到语音(TTS)T

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

VSCode Windows 64位 下载

VSCode Windows 64位 下载

微软推出的免费、功能强大的一款IDE编辑器

Dreamweaver Mac版

Dreamweaver Mac版

视觉化网页开发工具

mPDF

mPDF

mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具