写在前面&笔者的个人总结
近年来,自动驾驶领域的3D占据预测任务因其独特的优势受到学术界和工业界的广泛关注。该任务通过重建周围环境的3D结构,为自动驾驶的规划和导航提供详细信息。然而,目前主流的方法大多依赖于基于激光雷达(LiDAR)点云生成的标签来监督网络训练。 在最近的OccNeRF研究中,作者提出了一种自监督的多相机占据预测方法,名为参数化占据场(Parameterized Occupancy Fields)。该方法解决了室外场景中无边界的问题,并重新组织了采样策略。然后,通过体渲染(Volume Rendering)技术,将占据场转换为多相机深度图,并通过多帧光度一致性(Photometric Error)进行监督。 此外,该方法还利用预训练的开放词汇语义分割模型来生成2D语义标签,以赋予占据场语义信息。这种开放词汇语义分割模型能够对场景中的不同物体进行分割,并为每个物体分配语义标签。通过将这些语义标签与占据场结合,模型能够更好地理解环境并做出更准确的预测。 总之,OccNeRF方法通过参数化占据场、体渲染和多帧光度一致性的组合使用,以及与开放词汇语义分割模型的结合,实现了自动驾驶场景中的高精度占据预测。这种方法为自动驾驶系统提供了更多的环境信息,有望提高自动驾驶的安全性和可靠性。
- 论文链接:https://arxiv.org/pdf/2312.09243.pdf
- 代码链接:https://github.com/LinShan-Bin/OccNeRF
OccNeRF问题背景
近年来,随着人工智能技术的飞速发展,自动驾驶领域也取得了巨大进展。3D 感知是实现自动驾驶的基础,为后续的规划决策提供必要信息。传统方法中,激光雷达能直接捕获精确的 3D 数据,但传感器成本高且扫描点稀疏,限制了其落地应用。相比之下,基于图像的 3D 感知方法成本低且有效,受到越来越多的关注。多相机 3D 目标检测在一段时间内是 3D 场景理解任务的主流,但它无法应对现实世界中无限的类别,并受到数据长尾分布的影响。
3D 占据预测能很好地弥补这些缺点,它通过多视角输入直接重建周围场景的几何结构。大多数现有方法关注于模型设计与性能优化,依赖 LiDAR 点云生成的标签来监督网络训练,这在基于图像的系统中是不可用的。换言之,我们仍需要利用昂贵的数据采集车来收集训练数据,并浪费大量没有 LiDAR 点云辅助标注的真实数据,这一定程度上限制了 3D 占据预测的发展。因此探索自监督 3D 占据预测是一个非常有价值的方向。
详解OccNeRF算法
下图展示了 OccNeRF 方法的基本流程。模型以多摄像头图像 作为输入,首先使用 2D backbone 提取 N 个图片的特征 ,随后直接通过简单的投影与双线性插值获 3D 特征(在参数化空间下),最后通过 3D CNN 网络优化 3D 特征并输出预测结果。为了训练模型,OccNeRF 方法通过体渲染生成当前帧的深度图,并引入前后帧来计算光度损失。为了引入更多的时序信息,OccNeRF 会使用一个占据场渲染多帧深度图并计算损失函数。同时,OccNeRF 还同时渲染 2D 语义图,并通过开放词汇语义分割模型进行监督。
Parameterized Occupancy Fields
Parameterized Occupancy Fields 的提出是为了解决相机与占据网格之间存在感知范围差距这一问题。理论上来讲,相机可以拍摄到无穷远处的物体,而以往的占据预测模型都只考虑较近的空间(例如 40 m 范围内)。在有监督方法中,模型可以根据监督信号学会忽略远处的物体;而在无监督方法中,若仍然只考虑近处的空间,则图像中存在的大量超出范围的物体将对优化过程产生负面影响。基于此,OccNeRF 采用了 Parameterized Occupancy Fields 来建模范围无限的室外场景。
OccNeRF 中的参数化空间分为内部和外部。内部空间是原始坐标的线性映射,保持了较高的分辨率;而外部空间表示了无穷大的范围。具体来说,OccNeRF 分别对 3D 空间中点的 坐标做如下变化:
其中 为 坐标,, 是可调节的参数,表示内部空间对应的边界值, 也是可调节的参数,表示内部空间占据的比例。在生成 parameterized occupancy fields 时,OccNeRF 先在参数化空间中采样,通过逆变换得到原始坐标,然后将原始坐标投影到图像平面上,最后通过采样和三维卷积得到占据场。
Multi-frame Depth Estimation
为了实现训练 occupancy 网络,OccNeRF选择利用体渲染将 occupancy 转换为深度图,并通过光度损失函数来监督。渲染深度图时采样策略很重要。在参数化空间中,若直接根据深度或视差均匀采样,都会造成采样点在内部或外部空间分布不均匀,进而影响优化过程。因此,OccNeRF 提出在相机中心离原点较近的前提下,可直接在参数化空间中均匀采样。此外,OccNeRF 在训练时会渲染并监督多帧深度图。
下图直观地展示了使用参数化空间表示占据的优势。(其中第三行使用了参数化空间,第二行没有使用。)
Semantic Label Generation
OccNeRF 使用预训练的 GroundedSAM (Grounding DINO + SAM) 生成 2D 语义标签。为了生成高质量的标签,OccNeRF 采用了两个策略,一是提示词优化,用精确的描述替换掉 nuScenes 中模糊的类别。OccNeRF中使用了三种策略优化提示词:歧义词替换(car 替换为 sedan)、单词变多词(manmade 替换为 building, billboard and bridge)和额外信息引入(bicycle 替换为 bicycle, bicyclist)。二是根据 Grounding DINO 中检测框的置信度而不是 SAM 给出的逐像素置信度来决定类别。OccNeRF 生成的语义标签效果如下:
OccNeRF实验结果
OccNeRF 在 nuScenes 上进行实验,并主要完成了多视角自监督深度估计和 3D 占据预测任务。
多视角自监督深度估计
OccNeRF 在 nuScenes 上多视角自监督深度估计性能如下表所示。可以看到基于 3D 建模的 OccNeRF 显著超过了 2D 方法,也超过了 SimpleOcc,很大程度上是由于 OccNeRF 针对室外场景建模了无限的空间范围。
论文中的部分可视化效果如下:
3D 占据预测
OccNeRF 在 nuScenes 上 3D 占据预测性能如下表所示。由于 OccNeRF 完全不使用标注数据,其性能与有监督方法仍有差距。但部分类别(如 drivable surface 与 manmade)已达到与有监督方法可比的性能。
文中的部分可视化效果如下:
总结
在许多汽车厂商都尝试去掉 LiDAR 传感器的当下,如何利用好成千上万无标注的图像数据,是一个重要的课题。而 OccNeRF 给我们带来了一个很有价值的尝试。
原文链接:https://mp.weixin.qq.com/s/UiYEeauAGVtT0c5SB2tHEA
以上是OccNeRF:完全无需激光雷达数据监督的详细内容。更多信息请关注PHP中文网其他相关文章!

软AI(被定义为AI系统,旨在使用近似推理,模式识别和灵活的决策执行特定的狭窄任务 - 试图通过拥抱歧义来模仿类似人类的思维。 但是这对业务意味着什么

答案很明确 - 只是云计算需要向云本地安全工具转变,AI需要专门为AI独特需求而设计的新型安全解决方案。 云计算和安全课程的兴起 在

企业家,并使用AI和Generative AI来改善其业务。同时,重要的是要记住生成的AI,就像所有技术一样,都是一个放大器 - 使得伟大和平庸,更糟。严格的2024研究O

解锁嵌入模型的力量:深入研究安德鲁·NG的新课程 想象一个未来,机器可以完全准确地理解和回答您的问题。 这不是科幻小说;多亏了AI的进步,它已成为R

大型语言模型(LLM)和不可避免的幻觉问题 您可能使用了诸如Chatgpt,Claude和Gemini之类的AI模型。 这些都是大型语言模型(LLM)的示例,在大规模文本数据集上训练的功能强大的AI系统

最近的研究表明,根据行业和搜索类型,AI概述可能导致有机交通下降15-64%。这种根本性的变化导致营销人员重新考虑其在数字可见性方面的整个策略。 新的

埃隆大学(Elon University)想象的数字未来中心的最新报告对近300名全球技术专家进行了调查。由此产生的报告“ 2035年成为人类”,得出的结论是,大多数人担心AI系统加深的采用


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

SublimeText3汉化版
中文版,非常好用

适用于 Eclipse 的 SAP NetWeaver 服务器适配器
将Eclipse与SAP NetWeaver应用服务器集成。

Dreamweaver Mac版
视觉化网页开发工具

安全考试浏览器
Safe Exam Browser是一个安全的浏览器环境,用于安全地进行在线考试。该软件将任何计算机变成一个安全的工作站。它控制对任何实用工具的访问,并防止学生使用未经授权的资源。

MinGW - 适用于 Windows 的极简 GNU
这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。