首页 >科技周边 >人工智能 >ICLR为什么没有接受Mamba论文?AI社区掀起了大讨论

ICLR为什么没有接受Mamba论文?AI社区掀起了大讨论

WBOY
WBOY转载
2024-01-26 16:48:061179浏览

2023年,AI大模型领域的统治者Transformer的地位开始受到挑战。一种新的架构名为「Mamba」崭露头角,它是一种选择性状态空间模型,在语言建模方面与Transformer不相上下,甚至有可能超越它。与此同时,Mamba能够根据上下文长度的增加实现线性扩展,这使得它在处理实际数据时能够处理百万词汇长度的序列,并提升了5倍的推理吞吐量。这一突破性的性能提升令人瞩目,为AI领域的发展带来了新的可能性。

发布后的一个多月里,Mamba开始逐渐展现其影响力,并衍生出了MoE-Mamba、Vision Mamba、VMamba、U-Mamba、MambaByte等多个项目。在不断克服Transformer的短板方面,Mamba显示出了极大的潜力。这些发展显示出Mamba在不断发展和进步,为人工智能领域带来了新的可能性。

然而,这颗冉冉升起的"新星"在2024年的ICLR会议上遇到了挫折。最新的公开结果显示,Mamba的论文目前仍然处于待定状态,我们只能在待定决定一栏中看到它的名字,无法确定是被延迟决定还是被拒绝。

ICLR为什么没有接受Mamba论文?AI社区掀起了大讨论

总体来看,Mamba收到了四位审稿人的评分,分别为8/8/6/3。有人表示,如果遭到这样的评分仍然被拒绝,确实令人感到不解。

ICLR为什么没有接受Mamba论文?AI社区掀起了大讨论

要弄清其中的缘由,我们还得看一下打出低分的审稿人是怎么说的。

论文审稿页面:https://openreview.net/forum?id=AL1fq05o7H

为什么「not good enough」?

在评审反馈中,给出「3: reject, not good enough」打分的审稿人解释了自己对于 Mamba 的几点意见:

对模型设计的想法:

  • Mamba 的动机是解决递归模型的缺点,同时提高基于注意力模型的效率。有很多研究都是沿着这个方向进行的:S4-diagonal [1]、SGConv [2]、MEGA [3]、SPADE [4],以及许多高效的 Transformer 模型(如 [5])。所有这些模型都达到了接近线性的复杂度,作者需要在模型性能和效率方面将 Mamba 与这些作品进行比较。关于模型性能,一些简单的实验(如 Wikitext-103 的语言建模)就足够了。
  • 许多基于注意力的 Transformer 模型显示出长度泛化能力,即模型可以在较短的序列长度上进行训练,并在较长的序列长度上进行测试。这方面的例子包括相对位置编码(T5)和 Alibi [6]。由于 SSM 一般都是连续的,那么 Mamba 是否具有这种长度泛化能力呢?

对实验的想法:

  • 作者需要与更强的基线进行比较。作者表示 H3 被用作模型架构的动机,然而他们并没有在实验中与 H3 进行比较。根据 [7] 中的表 4,在 Pile 数据集上,H3 的 ppl 分别为 8.8(1.25 M)、7.1(3.55 M)和 6.0(1.3B),大大优于 Mamba。作者需要展示与 H3 的比较。
  • 对于预训练模型,作者只展示了零样本推理的结果。这种设置相当有限,结果不能很好地支持 Mamba 的有效性。我建议作者进行更多的长序列实验,比如文档摘要,输入序列自然会很长(例如,arXiv 数据集的平均序列长度大于 8k)。
  • 作者声称其主要贡献之一是长序列建模。作者应该在 LRA(Long Range Arena)上与更多基线进行比较,这基本上是长序列理解的标准基准。
  • 缺少内存基准。尽管第 4.5 节的标题是「速度和内存基准」,但只介绍了速度比较。此外,作者应提供图 8 左侧更详细的设置,如模型层、模型大小、卷积细节等。作者能否提供一些直观信息,说明为什么当序列长度非常大时,FlashAttention 的速度最慢(图 8 左)?

此外,另一位审稿人也指出 Mamba 存在的不足:该模型在训练过程中仍然像 Transformers 一样具有二次内存需求。

ICLR为什么没有接受Mamba论文?AI社区掀起了大讨论

作者:已修改,求审阅

汇总所有审稿人的意见之后,作者团队也对论文内容进行了修改和完善,补充了新的实验结果和分析:

  • 增加了 H3 模型的评估结果

作者下载了大小为 125M-2.7B 参数的预训练 H3 模型,并进行了一系列评估。Mamba 在所有语言评估中都明显更胜一筹,值得注意的是,这些 H3 模型是使用二次注意力的混合模型,而作者仅使用线性时间 Mamba 层的纯模型在各项指标上都明显更优。

与预训练 H3 模型的评估对比如下:

ICLR为什么没有接受Mamba论文?AI社区掀起了大讨论


  • 将完全训练过的模型扩展到更大的模型规模

如下图所示,与根据相同 token 数(300B)训练的 3B 开源模型相比,Mamba 在每个评估结果上都更胜一筹。它甚至可以与 7B 规模的模型相媲美:当将 Mamba(2.8B)与 OPT、Pythia 和 RWKV(7B)进行比较时,Mamba 在每个基准上都获得了最佳平均分和最佳 / 次佳得分。

ICLR为什么没有接受Mamba论文?AI社区掀起了大讨论


  • 展示了超出训练长度的长度外推结果

作者附上了一张评估预训练 3B 参数语言模型长度外推的附图:

ICLR为什么没有接受Mamba论文?AI社区掀起了大讨论

图中绘出了每个位置的平均损失(对数可读性)。第一个 token 的困惑度很高,因为它没有上下文,而 Mamba 和基线 Transformer(Pythia)的困惑度在训练上下文长度(2048)之前都有所提高。有趣的是,Mamba 的可解性在超过其训练上下文后有了显著提高,最高可达 3000 左右的长度。

作者强调,长度外推并不是本文模型的直接动机,而是将其视为额外功能:

  1. 这里的基线模型(Pythia)在训练时并没有考虑长度外推法,或许还有其他 Transformer 变体更具通用性(例如 T5 或 Alibi 相对位置编码)。
  2. 没有发现任何使用相对位置编码在 Pile 上训练的开源 3B 模型,因此无法进行这种比较。
  3. Mamba 和 Pythia 一样,在训练时没有考虑长度外推法,因此不具有可比性。正如 Transformer 有很多技术(如不同的位置嵌入)来提高它们在长度概括等轴上的能力一样,在未来的工作中,为类似的能力推导出 SSM 特有的技术可能会很有趣。
  • 补充了 WikiText-103 的新结果

作者分析了多篇论文的结果,表明 Mamba 在 WikiText-103 上的表现明显优于其他 20 多个最新的次二次序列模型。

ICLR为什么没有接受Mamba论文?AI社区掀起了大讨论

ICLR为什么没有接受Mamba论文?AI社区掀起了大讨论

ICLR为什么没有接受Mamba论文?AI社区掀起了大讨论

尽管如此,两个月过去了,这篇论文还处于「Decision Pending」流程中,没有得到「接收」或者「拒绝」的明确结果。

被顶会拒绝的那些论文

在各大 AI 顶会中,「投稿数量爆炸」都是一个令人头疼的问题,所以精力有限的审稿人难免有看走眼的时候。这就导致历史上出现了很多著名论文被顶会拒绝的情况,包括 YOLO、transformer XL、Dropout、支持向量机(SVM)、知识蒸馏、SIFT,还有 Google 搜索引擎的网页排名算法 PageRank(参见:《大名鼎鼎的 YOLO、PageRank 影响力爆棚的研究,曾被 CS 顶会拒稿》)。

甚至,身为深度学习三巨头之一的 Yann LeCun 也是经常被拒的论文大户。刚刚,他发推文说,自己被引 1887 次的论文「Deep Convolutional Networks on Graph-Structured Data」也被顶会拒绝了。

ICLR为什么没有接受Mamba论文?AI社区掀起了大讨论

在 ICML 2022 期间,他甚至「投了三篇,被拒三篇」。

ICLR为什么没有接受Mamba论文?AI社区掀起了大讨论

所以,论文被某个顶会拒绝并不代表没有价值。在上述被拒的论文中,很多论文选择了转投其他会议,并最终被接收。因此,网友建议 Mamba 转投陈丹琦等青年学者组建的 COLM。COLM 是一个专注于语言建模研究的学术场所,专注于理解、改进和评论语言模型技术的发展,或许对于 Mamba 这类论文来说是更好的选择。

ICLR为什么没有接受Mamba论文?AI社区掀起了大讨论

不过,无论 Mamba 最终能否被 ICLR 接收,它都已经成为一份颇具影响力的工作,也让社区看到了冲破 Transformer 桎梏的希望,为超越传统 Transformer 模型的探索注入了新的活力。

以上是ICLR为什么没有接受Mamba论文?AI社区掀起了大讨论的详细内容。更多信息请关注PHP中文网其他相关文章!

声明:
本文转载于:51cto.com。如有侵权,请联系admin@php.cn删除