RLHF即从人类反馈中强化学习。本文就来介绍大语言模型(LLM)是如何与RLHF结合起来的。
RLHF的机制
强化学习是机器学习的一个分支,它通过代理与环境交互来学习最优策略。代理选择行动,这些行动会影响环境状态的转换,并得到相应的奖励。奖励是强化学习智能体调整策略的反馈信号。在训练阶段,智能体根据奖励调整策略,以最大化长期回报。
因此,设计恰当的奖励系统至关重要,它是强化学习的关键。而RLHF则通过整合人类的反馈,将人类纳入训练过程中,以增强强化学习代理的训练效果。
RLHF通用框架
大型语言模型(LLM)的强化学习微调过程通常包括三个阶段。首先,我们从经过预训练的语言模型开始。由于LLM需要大量的训练数据,从零开始通过人工反馈进行训练是不切实际的。因此,我们可以通过无监督学习的方式进行预训练,利用现有的语言模型进行输出生成。 在预训练完成后,接下来是微调阶段。在此阶段,我们将使用强化学习算法来对LLM进行优化。通过与环境的交互,LLM可以从环境中获得反馈,并通过调整模型的参数来优化其输出。 最后一个阶段是后续微调。在这一阶段,LLM将与特定任务进行交互,并通过
接下来,进入第二阶段,我们需要为RL系统创建奖励模型。在这个阶段,我们训练另一个机器学习模型,它会接收主模型生成的文本并为其生成一个质量分数。通常,我们会使用另一个LLM模型,并进行相应的修改,使其能够输出一个标量值,而不是文本标记序列。这个质量分数将用作奖励信号,以引导主模型生成更高质量的文本。
为了训练奖励模型,我们需要构建一个包含LLM生成文本的质量评估数据集。每个训练示例由一个提示和LLM生成的多个输出组成。接下来,我们请人工评估这些生成文本的质量。然后,我们使用这些评估结果来训练奖励模型,以预测LLM生成文本的得分。通过在LLM的输出和评分之间进行训练,奖励模型能够建立起人类偏好的数学表示。
在最后阶段,我们进行了微调,创建了一个强化学习循环。主LLM的副本被用作RL代理。在每个训练集上,LLM从数据集中获取多个提示,并生成文本。接着,该文本被传递给奖励模型,该模型会给出一个分数,用来评估其与人类偏好的一致性。然后,我们更新LLM,以生成在奖励模型上得分更高的输出。
虽然这是语言模型的RLHF通用框架,但不同的实现目标需要进行对应修改。
RLHF中对语言模型的另一个考虑是在奖励优化和语言一致性之间保持平衡。尽管奖励模型只是对人类偏好的不完美近似,但代理LLM可能会通过违反语法或逻辑一致性来最大化奖励,这与大多数RL系统类似。为了防止这种情况发生,ML团队保留了原始LLM的副本,并在RL循环中使用。他们将原始LLM的输出与RL训练的LLM的输出之间的差异(KL散度)作为负值集成到奖励信号中,以防止模型和原始输出之间的偏差过大。这种策略旨在平衡奖励优化和语言一致性之间的关系。
以上是语言模型中的RLHF技术的起源与应用是什么?的详细内容。更多信息请关注PHP中文网其他相关文章!

利用微调LLM的功能与Monsterapi:综合指南 想象一个虚拟助手完美理解并预测您的需求。 由于大型语言模型(LLMS)的进步,这已成为现实。 但是,

数据科学的基本统计测试:综合指南 从数据中解锁有价值的见解至关重要。 掌握统计测试对于实现这一目标至关重要。这些测试使数据科学家能够严格瓦尔

介绍 原始变压器的引入为当前的大语言模型铺平了道路。同样,在引入变压器模型之后,引入了视觉变压器(VIT)。喜欢

Langchain文本拆分器:优化LLM输入以提高效率和准确性 我们上一篇文章介绍了Langchain的文档加载程序。 但是,LLM具有上下文窗口大小的限制(以代币测量)。 超过此限制会截断数据,comp

生成的AI:革命性的创造力和创新 生成的AI通过按下按钮来创建文本,图像,音乐和虚拟世界来改变行业。 它的影响跨越视频编辑,音乐制作,艺术,娱乐,HEA

利用嵌入模型的力量来回答高级问题 在当今信息丰富的世界中,立即获得精确答案的能力至关重要。 本文展示了使用强大的提问(QA)模型

本文探讨了十个彻底改变人工智能(AI)和机器学习(ML)的开创性出版物。 我们将研究神经网络和算法的最新突破,并解释驱动现代AI的核心概念。 Th

AI在SEO中的崛起:超过SEO代理商的前11个工具 AI的快速发展已深刻地重塑了SEO景观。 旨在提高顶级搜索引擎排名的企业正在利用AI优化其在线策略的能力。 来自AU


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

Dreamweaver Mac版
视觉化网页开发工具

记事本++7.3.1
好用且免费的代码编辑器

mPDF
mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),

安全考试浏览器
Safe Exam Browser是一个安全的浏览器环境,用于安全地进行在线考试。该软件将任何计算机变成一个安全的工作站。它控制对任何实用工具的访问,并防止学生使用未经授权的资源。

适用于 Eclipse 的 SAP NetWeaver 服务器适配器
将Eclipse与SAP NetWeaver应用服务器集成。