Featuretools是一个Python库,用于自动化特征工程。它旨在简化特征工程过程,提高机器学习模型的性能。该库能够从原始数据中自动提取有用的特征,帮助用户节省时间和精力,同时还能提高模型的准确性。
以下是如何利用Featuretools实现自动特征工程的步骤:
第一步:准备数据
在使用Featuretools之前,需要准备好数据集。数据集必须是Pandas DataFrame格式,其中每行代表一个观察值,每列代表一个特征。对于分类和回归问题,数据集必须包含一个目标变量,而对于聚类问题,数据集不需要目标变量。因此,在使用Featuretools时,确保数据集符合这些要求,以便能够有效地进行特征工程和特征生成。
第二步:定义实体和关系
使用Featuretools进行特征工程时,需要首先定义实体和关系。实体是数据集中的一个子集,它包含一组相关的特征。例如,在电商网站上,订单、用户、产品和付款等可以作为不同的实体。关系则是实体之间的联系,例如,一个订单可能与一个用户相关联,一个用户可能购买了多个产品。通过明确定义实体和关系,可以更好地理解数据集的结构,便于进行特征生成和数据分析。
第三步:创建实体集
使用Featuretools,可以通过定义实体和关系来创建实体集。实体集是一个包含多个实体的集合。在这个步骤中,需要定义每个实体的名称、数据集、索引、变量类型和时间戳等。例如,可以使用以下代码创建一个包含订单和用户实体的实体集:
import featuretools as ft # Create entity set es=ft.EntitySet(id='ecommerce') # Define entities orders=ft.Entity(id='orders',dataframe=orders_df,index='order_id',time_index='order_time') users=ft.Entity(id='users',dataframe=users_df,index='user_id') # Add entities to entity set es=es.entity_from_dataframe(entity_id='orders',dataframe=orders_df,index='order_id',time_index='order_time') es=es.entity_from_dataframe(entity_id='users',dataframe=users_df,index='user_id')
在这里,我们使用EntitySet创建一个名为“ecommerce”的实体集,并使用Entity定义了两个实体,订单和用户。对于订单实体,我们指定了订单ID作为索引,订单时间作为时间戳。对于用户实体,我们只指定了用户ID作为索引。
第四步:定义关系
在这一步中,需要定义实体之间的关系。使用Featuretools,可以通过实体之间的共享变量、时间戳等来定义关系。例如,在电商网站上,每个订单都与一个用户相关联。可以使用以下代码定义订单和用户之间的关系:
# Define relationships r_order_user = ft.Relationship(orders['user_id'], users['user_id']) es = es.add_relationship(r_order_user)
在这里,我们使用Relationship定义了订单和用户之间的关系,并使用add_relationship将它们添加到实体集中。
第五步:运行深度特征合成算法
在完成以上步骤后,可以使用Featuretools的深度特征合成算法来自动生成特征。这个算法会自动创建新的特征,例如聚合、变换和组合等。可以使用以下代码运行深度特征合成算法:
# Run deep feature synthesis algorithm features, feature_names = ft.dfs(entityset=es, target_entity='orders', max_depth=2)
在这里,我们使用dfs函数运行深度特征合成算法,指定了目标实体为订单实体,并设置了最大深度为2。函数返回一个包含新特征的DataFrame以及特征名称的列表。
第六步:建立模型
在获得新特征后,可以使用它们来训练机器学习模型。可以使用以下代码将新特征添加到原始数据集中:
# Add new features to original dataset df=pd.merge(orders_df,features,left_on='order_id',right_on='order_id')
在这里,我们使用merge函数将新特征添加到原始数据集中,以便进行训练和测试。然后,可以使用新特征来训练机器学习模型,例如:
# Split dataset into train and test sets X_train, X_test, y_train, y_test = train_test_split(df[feature_names], df['target'], test_size=0.2, random_state=42) # Train machine learning model model = RandomForestClassifier() model.fit(X_train, y_train) # Evaluate model performance y_pred = model.predict(X_test) accuracy_score(y_test, y_pred)
在这里,我们使用随机森林分类器作为机器学习模型,并使用训练集来训练模型。然后,我们使用测试集来评估模型性能,使用准确率作为评估指标。
总结:
利用Featuretools实现自动特征工程的步骤包括准备数据、定义实体和关系、创建实体集、定义关系、运行深度特征合成算法和建立模型。Featuretools可以自动从原始数据中提取有用的特征,帮助用户节省大量时间和精力,并提高机器学习模型的性能。
以上是利用Featuretools实现自动特征工程的详细内容。更多信息请关注PHP中文网其他相关文章!

软AI(被定义为AI系统,旨在使用近似推理,模式识别和灵活的决策执行特定的狭窄任务 - 试图通过拥抱歧义来模仿类似人类的思维。 但是这对业务意味着什么

答案很明确 - 只是云计算需要向云本地安全工具转变,AI需要专门为AI独特需求而设计的新型安全解决方案。 云计算和安全课程的兴起 在

企业家,并使用AI和Generative AI来改善其业务。同时,重要的是要记住生成的AI,就像所有技术一样,都是一个放大器 - 使得伟大和平庸,更糟。严格的2024研究O

解锁嵌入模型的力量:深入研究安德鲁·NG的新课程 想象一个未来,机器可以完全准确地理解和回答您的问题。 这不是科幻小说;多亏了AI的进步,它已成为R

大型语言模型(LLM)和不可避免的幻觉问题 您可能使用了诸如Chatgpt,Claude和Gemini之类的AI模型。 这些都是大型语言模型(LLM)的示例,在大规模文本数据集上训练的功能强大的AI系统

最近的研究表明,根据行业和搜索类型,AI概述可能导致有机交通下降15-64%。这种根本性的变化导致营销人员重新考虑其在数字可见性方面的整个策略。 新的

埃隆大学(Elon University)想象的数字未来中心的最新报告对近300名全球技术专家进行了调查。由此产生的报告“ 2035年成为人类”,得出的结论是,大多数人担心AI系统加深的采用


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

SublimeText3汉化版
中文版,非常好用

Atom编辑器mac版下载
最流行的的开源编辑器

VSCode Windows 64位 下载
微软推出的免费、功能强大的一款IDE编辑器

禅工作室 13.0.1
功能强大的PHP集成开发环境

DVWA
Damn Vulnerable Web App (DVWA) 是一个PHP/MySQL的Web应用程序,非常容易受到攻击。它的主要目标是成为安全专业人员在合法环境中测试自己的技能和工具的辅助工具,帮助Web开发人员更好地理解保护Web应用程序的过程,并帮助教师/学生在课堂环境中教授/学习Web应用程序安全。DVWA的目标是通过简单直接的界面练习一些最常见的Web漏洞,难度各不相同。请注意,该软件中