在AR、VR、3D打印、场景搭建以及电影制作等多个领域中,高质量的穿着衣服的人体3D模型非常重要。
传统方法创建模型需大量时间,专业设备和技术人员才可完成。
相反,在日常生活中,我们通常使用手机相机或在网页上找到的人像照片。
因此,一种能从单张图像准确重建3D人体模型的方法可以显着降低成本,并简化独立创作的过程。
以往方法(左)与本文方法技术路线比较(右)
以往的深度学习模型用于3D人体重建,往往需要经过三个步骤:从图像中提取2D特征,将2D特征转到3D空间,以及3D特征用于人体重建。
然而这些方法在2D特征转换到3D空间的阶段,往往忽略了人体先验的引入,导致特征的提取不够充分,最终重建结果上会出现各种缺陷。
SIFU与其他SOTA模型重建效果比较
此外,在对纹理预测的阶段,以往模型仅仅依靠训练集中学得的知识,缺少真实世界的先验知识,也往往导致不可见区域的纹理预测较差。
SIFU在纹理预测阶段引入先验知识,增强不可见区域(背部等)的纹理效果。
对此,来自浙江大学ReLER实验室的研究人员提出SIFU模型,依靠侧视图条件隐函数从单张图片重建3D人体模型。
图片
论文地址:https://arxiv.org/abs/2312.06704
项目地址:https://github.com/River-Zhang/SIFU
该模型通过在2D特征转换到3D空间引入人体侧视图作为先验条件,增强几何重建效果。并在纹理优化阶段引入预训练的扩散模型,来解决不可见区域纹理较差的问题。
模型结构
模型pipeline如下:
图片
该模型运行可分为两个阶段,第一阶段借助侧隐式函数重建人体的几何(mesh)与粗糙的纹理(coarse texture),第二阶段则借助预训练的扩散模型对纹理进行精细化。
在第一阶段中,作者设计了一种独特的Side-view Decoupling Transformer,通过global encoder提取2D特征后,在decoder中引入了人体先验模型SMPL-X的侧视图作为query,从而在图像2D特征中解耦出人体不同方向的3D特征(前后左右),最后用于重建。
该方法成功的在2D特征转换到3D空间时结合人体先验知识,从而使得模型有更好的重建效果。
在第二阶段,作者提出一种3D一致性纹理优化流程(3D Consistent Texture Refinement),首先将人体不可见的区域(侧面、背面)可微渲染成视角连续的图片集,再借助在海量数据中学习到先验知识的扩散模型,对粗糙纹理图片进行一致性编辑,得到更精细的结果。最后通过精细化前后的图片计算损失来优化3D模型的纹理贴图。
实验部分
更高的重建精度
在实验部分,作者使用全面多样化的测试集对他们的模型进行测试,包括CAPE-NFP、CAPE-FP和THuman2.0 ,并与以往发表在各大顶会的单张图片人体重建SOTA模型进行比较。经定量测试,SIFU模型在几何重建与纹理重建中均表现出了最好的效果。
定量评估几何重建精度
定量评估纹理重建效果
使用互联网中公开图片作为输入进行定性效果展示
更强的鲁棒性
以往的模型应用训练集以外的数据时,由于估计的人体先验模型SMPL/SMPL-X不够准确,往往导致重建结果与输入图片相差甚远,难以投入实际应用。
对此,作者专门对模型的鲁棒性进行了测试,通过在ground truth先验模型参数中加入扰动使其位姿发生偏移,模拟真实场景中SMPL-X估计不准确的情况,来评估模型重建的精度。结果表明SIFU模型在该情况下,依然具有最好的重建精度。
评估模型面对有误差的人体先验模型时的鲁棒性
使用真实世界中的图片,在先验人体模型估计不准确的情况下,SIFU依然有较好的重建效果
更广阔的应用场景
SIFU模型的高精度高质量重建效果,使得其具有丰富的应用场景,包括3D打印、场景搭建、纹理编辑等。
3D打印SIFU重建的人体模型
SIFU用于3D场景搭建
借助公开动作序列数据,可对SIFU重建的模型进行驱动
总结
本文提出侧视图条件隐式函数和3D一致性纹理编辑方法,弥补了以往工作在2D特征转换到3D空间、纹理预测时对先验知识引入的不足,极大的提高了单张图片人体重建的精度和效果,使模型在真实世界应用中具有显著的优势,也为该领域未来的研究提供了新的思路。
参考资料:
https://arxiv.org/abs/2312.06704
以上是浙大提出新SOTA技术SIFU:仅需一张图片即可重建高质量3D人体模型的详细内容。更多信息请关注PHP中文网其他相关文章!

Meta携手Nvidia、IBM和Dell等合作伙伴,拓展了Llama Stack的企业级部署整合。在安全方面,Meta推出了Llama Guard 4、LlamaFirewall和CyberSecEval 4等新工具,并启动了Llama Defenders计划,以增强AI安全性。此外,Meta还向10个全球机构(包括致力于改善公共服务、医疗保健和教育的初创企业)发放了总额150万美元的Llama Impact Grants。 由Llama 4驱动的全新Meta AI应用,被设想为Meta AI

公司开创性的人类互动公司Joi AI介绍了“ AI-Iatsionship”一词来描述这些不断发展的关系。 Joi AI的关系治疗师Jaime Bronstein澄清说,这并不是要取代人类C

在线欺诈和机器人攻击对企业构成了重大挑战。 零售商与机器人ho积产品,银行战斗帐户收购和社交媒体平台与模仿者的斗争。 AI的兴起加剧了这个问题,Rende

AI代理人有望彻底改变营销,并可能超过以前技术转变的影响。 这些代理代表了生成AI的重大进步,不仅是处理诸如chatgpt之类的处理信息,而且还采取了Actio

人工智能对关键NBA游戏4决策的影响 两场关键游戏4 NBA对决展示了AI在主持仪式中改变游戏规则的角色。 首先,丹佛的尼古拉·乔基奇(Nikola Jokic)错过了三分球,导致亚伦·戈登(Aaron Gordon)的最后一秒钟。 索尼的鹰

传统上,扩大重生医学专业知识在全球范围内要求广泛的旅行,动手培训和多年指导。 现在,AI正在改变这一景观,克服地理局限性并通过EN加速进步

英特尔正努力使其制造工艺重回领先地位,同时努力吸引无晶圆厂半导体客户在其晶圆厂制造芯片。为此,英特尔必须在业界建立更多信任,不仅要证明其工艺的竞争力,还要证明合作伙伴能够以熟悉且成熟的工作流程、一致且高可靠性地制造芯片。今天我听到的一切都让我相信英特尔正在朝着这个目标前进。 新任首席执行官谭立柏的主题演讲拉开了当天的序幕。谭立柏直率而简洁。他概述了英特尔代工服务的若干挑战,以及公司为应对这些挑战、为英特尔代工服务的未来规划成功路线而采取的措施。谭立柏谈到了英特尔代工服务正在实施的流程,以更以客

全球专业再保险公司Chaucer Group和Armilla AI解决了围绕AI风险的日益严重的问题,已联手引入了新型的第三方责任(TPL)保险产品。 该政策保护业务不利


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

Dreamweaver CS6
视觉化网页开发工具

mPDF
mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),

记事本++7.3.1
好用且免费的代码编辑器

适用于 Eclipse 的 SAP NetWeaver 服务器适配器
将Eclipse与SAP NetWeaver应用服务器集成。

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)