搜索
首页科技周边人工智能网友盛赞:Transformer引领年度论文的简化版本来了

从大模型的根源开始优化。

Transformer 架构可以说是近期深度学习领域许多成功案例背后的主力军。构建深度 Transformer 架构的一种简单方法是将多个相同的 Transformer 「块」(block)依次堆叠起来,但每个「块」都比较复杂,由许多不同的组件组成,需要以特定的排列组合才能实现良好的性能。

自从 2017 年 Transformer 架构诞生以来,研究者们基于其推出了大量衍生研究,但几乎没有改动过 Transformer 「块」。

那么问题来了,标准 Transformer 块是否可以简化?

在最近的一篇论文中,来自 ETH Zurich 的研究者讨论了如何在不影响收敛特性和下游任务性能的情况下简化 LLM 所必需的标准 Transformer 块。基于信号传播理论和经验证据,他们发现可以移除一些部分,比如残差连接、归一化层(LayerNorm)、投影和值参数以及 MLP 序列化子块(有利于并行布局),以简化类似 GPT 的解码器架构以及编码器式 BERT 模型。

研究者探讨了在不影响训练速度的情况下,是否可以移除涉及的组件,并对Transformer块进行哪些架构修改。

网友盛赞:Transformer引领年度论文的简化版本来了

论文链接:https://arxiv.org/pdf/2311.01906.pdf

Lightning AI 创始人、机器学习研究者 Sebastian Raschka 将这项研究称为自己的「年度最爱论文之一」:

网友盛赞:Transformer引领年度论文的简化版本来了

但也有研究者质疑:「这很难评,除非我看过完整的训练过程。如果没有归一化层,也没有残差连接,如何能在大于 1 亿参数的网络中进行扩展?

网友盛赞:Transformer引领年度论文的简化版本来了

Sebastian Raschka 表示赞同:「是的,他们试验的架构相对较小,这是否能推广到数十亿参数的 Transformer 上还有待观察。」但他仍然表示这项工作令人印象深刻,并认为成功移除残差连接是完全合理的(考虑到其初始化方案)。

对此,图灵奖得主 Yann LeCun 的评价是:「我们仅仅触及了深度学习架构领域的皮毛。这是一个高维空间,因此体积几乎完全包含在表面中,但我们只触及了表面的一小部分。

网友盛赞:Transformer引领年度论文的简化版本来了

为什么需要简化 Transformer 块?

研究者表示,在不影响训练速度的前提下简化 Transformer 块是一个有趣的研究问题。

首先,现代神经网络架构设计复杂,包含许多组件,而这些不同组件在神经网络训练动态中所扮演的角色,以及它们之间如何相互作用,人们对此尚不清楚。这个问题事关深度学习理论与实践之间存在的差距,因此非常重要。

信号传播理论(Signal propagation)已被证明具有影响力,因为它能够激励深度神经网络架构中的实际设计选择。信号传播研究了初始化时神经网络中几何信息的演化,通过跨输入的分层表征的内积来捕捉,在训练深度神经网络方面取得了许多令人印象深刻的成果。

然而,目前该理论只考虑初始化时的模型,而且往往只考虑初始前向传递,因此无法揭示深度神经网络训练动态的许多复杂问题,例如残差连接对训练速度的助益。虽然信号传播对修改动机至关重要,但研究者表示,他们不能仅从理论上就得出简化的 Transformer 模块,还要依靠经验见解。

在实际应用方面,考虑到目前训练和部署大型 Transformer 模型的高昂成本,Transformer 架构的训练和推理流水线的任何效率提升都代表着巨大的潜在节约意义。如果能够通过移除非必要组件来简化 Transformer 模块,既能减少参数数量,又能提高模型的吞吐量。

这篇论文也提到,移除残差连接、值参数、投影参数和序列化子块之后,可以同时做到在训练速度和下游任务性能方面与标准 Transformer 相匹配。最终,研究者将参数量减少了 16%,并观察到训练和推理时间的吞吐量增加了 16%。

如何简化 Transformer 块?

研究者结合信号传播理论和经验观察,介绍了如何从 Pre-LN 模块出发,生成最简单的 Transformer 块(如下图)。

网友盛赞:Transformer引领年度论文的简化版本来了

在论文第四章的每一个小节,作者分别介绍了如何在不影响训练速度的情况下每次删除一个块组件。

这一部分的所有实验都在 CodeParrot 数据集上使用了一个 18-block 768-width 的因果仅解码器类 GPT 模型,这个数据集足够大,因此当作者处于单个训练 epoch 模式时,泛化差距非常小(见图 2),这使得他们可以专注于训练速度。

网友盛赞:Transformer引领年度论文的简化版本来了

删除残差连接

研究者首先考虑删除注意力子块中的残差连接。在公式(1)的符号中,这相当于将 α_SA 固定为 0。简单地移除注意力残差连接会导致信号退化,即秩崩溃(rank collapse),从而导致可训练性差。在论文 4.1 部分,研究者详细解释了他们的方法。

网友盛赞:Transformer引领年度论文的简化版本来了

删除投影 / 值参数

从图 3 中可以得出结论,完全移除值和投影参数 W^V、W^P 是可能的,而且每次更新的训练速度损失最小。也就是说,当 β_V = β_P = 0 和 identity 初始化的

网友盛赞:Transformer引领年度论文的简化版本来了

时,在相同的训练步数后,本研究基本上能达到 Pre-LN 块的性能。在这种情况下,在整个训练过程中都有 W^V = W^P = I,即值和投影参数是一致的。作者在 4.2 节介绍了详细方法。

网友盛赞:Transformer引领年度论文的简化版本来了

删除 MLP 子块残差连接

与上述几个模块相比,删除 MLP 子块残差连接要更具挑战性。与之前的研究一样,作者发现,在使用 Adam 时,如果没有 MLP 残差连接,通过信号传播使激活更加线性仍会导致每次更新训练速度的显著下降,如图 22 所示。

网友盛赞:Transformer引领年度论文的简化版本来了

他们还尝试了 Looks Linear 初始化的各种变体,包括高斯权重、正交权重或恒等权重,但都无济于事。因此,他们在整个工作中使用标准激活(例如 ReLU)和 MLP 子块中的初始化。

作者转向并行 MHA 和 MLP 子块的概念,这在几个近期的大型 transformer 模型中已被证明很受欢迎,例如 PALM 和 ViT-22B。并行 transformer 块如下图所示。

网友盛赞:Transformer引领年度论文的简化版本来了

作者在论文 4.3 节详细介绍了移除 MLP 子块残差连接的具体操作。

删除归一化层

最后一个被删除的是归一化层,这样就得到了图 1 右上角的最简块。从信号传播初始化的角度来看,作者可以在本节简化的任何阶段移除归一化层。他们的想法是,Pre-LN 块中的归一化会隐式地降低残差分支的权重,而这种有利的效果可以通过另一种机制在没有归一化层的情况下复制:要么在使用残差连接时明确降低残差分支的权重,要么将注意力矩阵偏向 identity / 将 MLP 非线性转化为「更」线性。

由于作者在修改过程中考虑到了这些机制(如降低 MLP β_FF 和 Shaped Attention 的权重),因此无需进行归一化处理。作者在第 4.4 节介绍了更多信息。

实验结果

深度扩展

鉴于信号传播理论通常关注很大的深度,而这种情况下通常会出现信号退化。因此一个很自然的问题就是,本文的简化 transformer 块所提高的训练速度是否也能扩展到更大的深度?

从图 6 中可以观察到,将深度从 18 个块扩展到 72 个块后,本研究的模型和 Pre-LN transformer 的性能都得到了提高,这表明本研究中的简化模型不仅训练速度更快,而且还能利用更大的深度所提供的额外能力。事实上,在使用归一化时,本研究中的简化块和 Pre-LN 的每次更新轨迹在不同深度下几乎没有区别。

网友盛赞:Transformer引领年度论文的简化版本来了

BERT

接下来,作者展示了他们的简化块性能除了适用于自回归解码器之外,还适用于不同的数据集和架构,以及下游任务。他们选择了双向仅编码器 BERT 模型的流行设置,用于掩蔽语言建模,并采用下游 GLUE 基准。

如图 7 所示,在 24 小时运行时内,与(Crammed)Pre-LN 基线相比,本研究的简化块可以媲美掩蔽语言建模任务的预训练速度。另一方面,在不修改值和投影的情况下删除残差连接再次导致训练速度的显着下降。在图 24 中,作者提供了 microbatch 步骤的等效图。

网友盛赞:Transformer引领年度论文的简化版本来了

网友盛赞:Transformer引领年度论文的简化版本来了

此外,在表 1 中,研究者发现他们的方法在 GLUE 基准上经过微调后,性能与 Crammed BERT 基准相当。

网友盛赞:Transformer引领年度论文的简化版本来了

他们在表 2 中对下游任务进行了细分。为了进行公平比较,他们使用了与 Geiping & Goldstein (2023) 相同的微调协议(5 个 epoch、各任务超参数恒定、dropout regularisation)。

网友盛赞:Transformer引领年度论文的简化版本来了

效率提升

在表 1 中,研究者还详细列出了使用不同 Transformer 块的模型在掩蔽语言建模任务中的参数数量和训练速度。他们以预训练 24 小时内所采取的 microbatch 步骤数与基线 Pre-LN Crammed BERT 的比率计算了速度。结论是,模型使用的参数减少了 16%,SAS-P 和 SAS 的每次迭代速度分别比 Pre-LN 块快 16% 和 9%。

可以注意到,在这里的实现中,并行块只比Pre-LN 块快5%,而Chowdhery et al.(2022 )观察到的训练速度则快15%,这表明通过更优化的实现,整个训练速度有可能进一步提高。与 Geiping & Goldstein(2023 年)一样,此处实现也使用了 PyTorch 中的自动算子融合技术 (Sarofeen et al., 2022)。

更长的训练

最后,考虑到当前在更多数据上长时间训练较小模型的趋势,研究者讨论了简化块在长时间训练后是否仍能达到Pre-LN 块的训练速度。为此,他们在 CodeParrot 上使用图 5 中的模型,并使用 3 倍 token 进行训练。准确地说,是在批大小为 128、序列长度为 128 的情况下进行了约 120K 步(而不是 40K 步)的训练,这将导致约 2B 个 token。

从图 8 可以看出,当使用更多的 token 进行训练时,简化的 SAS 和 SAS-P 代码块的训练速度仍然与 PreLN 代码块相当,甚至优于 PreLN 代码块。

网友盛赞:Transformer引领年度论文的简化版本来了

更多研究细节,可参考原论文。

以上是网友盛赞:Transformer引领年度论文的简化版本来了的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文转载于:机器之心。如有侵权,请联系admin@php.cn删除
拥抱面部是否7B型号奥林匹克赛车击败克劳德3.7?拥抱面部是否7B型号奥林匹克赛车击败克劳德3.7?Apr 23, 2025 am 11:49 AM

拥抱Face的OlympicCoder-7B:强大的开源代码推理模型 开发以代码为中心的语言模型的竞赛正在加剧,拥抱面孔与强大的竞争者一起参加了比赛:OlympicCoder-7B,一种产品

4个新的双子座功能您可以错过4个新的双子座功能您可以错过Apr 23, 2025 am 11:48 AM

你们当中有多少人希望AI可以做更多的事情,而不仅仅是回答问题?我知道我有,最近,我对它的变化感到惊讶。 AI聊天机器人不仅要聊天,还关心创建,研究

Camunda为经纪人AI编排编写了新的分数Camunda为经纪人AI编排编写了新的分数Apr 23, 2025 am 11:46 AM

随着智能AI开始融入企业软件平台和应用程序的各个层面(我们必须强调的是,既有强大的核心工具,也有一些不太可靠的模拟工具),我们需要一套新的基础设施能力来管理这些智能体。 总部位于德国柏林的流程编排公司Camunda认为,它可以帮助智能AI发挥其应有的作用,并与新的数字工作场所中的准确业务目标和规则保持一致。该公司目前提供智能编排功能,旨在帮助组织建模、部署和管理AI智能体。 从实际的软件工程角度来看,这意味着什么? 确定性与非确定性流程的融合 该公司表示,关键在于允许用户(通常是数据科学家、软件

策划的企业AI体验是否有价值?策划的企业AI体验是否有价值?Apr 23, 2025 am 11:45 AM

参加Google Cloud Next '25,我渴望看到Google如何区分其AI产品。 有关代理空间(此处讨论)和客户体验套件(此处讨论)的最新公告很有希望,强调了商业价值

如何为抹布找到最佳的多语言嵌入模型?如何为抹布找到最佳的多语言嵌入模型?Apr 23, 2025 am 11:44 AM

为您的检索增强发电(RAG)系统选择最佳的多语言嵌入模型 在当今的相互联系的世界中,建立有效的多语言AI系统至关重要。 强大的多语言嵌入模型对于RE至关重要

麝香:奥斯汀的机器人需要每10,000英里进行干预麝香:奥斯汀的机器人需要每10,000英里进行干预Apr 23, 2025 am 11:42 AM

特斯拉的Austin Robotaxi发射:仔细观察Musk的主张 埃隆·马斯克(Elon Musk)最近宣布,特斯拉即将在德克萨斯州奥斯汀推出的Robotaxi发射,最初出于安全原因部署了一支小型10-20辆汽车,并有快速扩张的计划。 h

AI震惊的枢轴:从工作工具到数字治疗师和生活教练AI震惊的枢轴:从工作工具到数字治疗师和生活教练Apr 23, 2025 am 11:41 AM

人工智能的应用方式可能出乎意料。最初,我们很多人可能认为它主要用于代劳创意和技术任务,例如编写代码和创作内容。 然而,哈佛商业评论最近报道的一项调查表明情况并非如此。大多数用户寻求人工智能的并非是代劳工作,而是支持、组织,甚至是友谊! 报告称,人工智能应用案例的首位是治疗和陪伴。这表明其全天候可用性以及提供匿名、诚实建议和反馈的能力非常有价值。 另一方面,营销任务(例如撰写博客、创建社交媒体帖子或广告文案)在流行用途列表中的排名要低得多。 这是为什么呢?让我们看看研究结果及其对我们人类如何继续将

公司竞争AI代理的采用公司竞争AI代理的采用Apr 23, 2025 am 11:40 AM

AI代理商的兴起正在改变业务格局。 与云革命相比,预计AI代理的影响呈指数增长,有望彻底改变知识工作。 模拟人类决策的能力

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

SublimeText3 英文版

SublimeText3 英文版

推荐:为Win版本,支持代码提示!

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

mPDF

mPDF

mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境