微软 CEO 纳德拉在 Ignite 大会上宣布,上个月,Phi-2 小尺寸模型将完全开源。这一举措将显着改进常识推理、语言理解和逻辑推理的性能
今天,微软公布了 Phi-2 模型的更多细节以及全新的提示技术 promptbase。这个仅 27 亿参数的模型在大多数常识推理、语言理解、数学和编码任务上超越了 Llama2 7B、Llama2 13B、Mistral 7B,与 Llama2 70B 的差距也在缩小(甚至更好)。
同时,小尺寸的 Phi-2 可以在笔记本电脑、手机等移动设备上运行。纳德拉表示,微软非常高兴将一流的小语言模型(SLM)和 SOTA 提示技术向研发人员分享。
微软在今年六月发表了一篇名为《只需教科书》的论文,使用了仅包含7B个标记的“教科书质量”数据来训练了一个包含1.3B个参数的模型,即phi-1。尽管数据集和模型规模比竞争对手小几个数量级,但是phi-1在HumanEval中的一次通过率达到了50.6%,在MBPP中的准确率达到了55.5%。 phi-1证明了即使是高质量的“小数据”也能够使模型具备良好的性能
微软随后在九月份发表了《只需教科书II:Phi-1.5技术报告》,对高质量的“小数据”潜力进行了进一步的研究。文中提出了Phi-1.5,该参数适用于QA问答、代码等场景,可达到13亿的规模
如今27 亿参数的Phi-2,再次用「小身板」给出了卓越的推理和语言理解能力,展示了130 亿参数以下基础语言模型中的SOTA 性能。得益于在模型缩放和训练数据管理方面的创新, Phi-2 在复杂的基准测试中媲美甚至超越了 25 倍于自身尺寸的模型。
微软表示,Phi-2 将成为研究人员的理想模型,可以进行可解释性探索、安全性改进或各种任务的微调实验。微软已经在 Azure AI Studio 模型目录中提供了 Phi-2,以促进语言模型的研发。
Phi-2 关键亮点
语言模型规模增加到千亿参数,的确释放了很多新能力,并重新定义了自然语言处理的格局。但仍存在一个问题:是否可以通过训练策略选择(比如数据选择)在较小规模的模型上同样实现这些新能力?
微软提供的解决方案是使用Phi系列模型,通过训练小型语言模型来实现与大型模型类似的性能。 Phi-2在两个方面打破了传统语言模型的缩放规则
首先,训练数据的质量在模型性能中起着至关重要的作用。微软通过专注于「教科书质量」的数据,将这一认知发挥到了极致。他们的训练数据包含了专门创建的综合数据集,教给模型常识性知识和推理,例如科学、日常活动和心理等。此外,他们还通过精心挑选的网络数据来进一步扩充自己的训练语料库,这些网络数据经过教育价值和内容质量的筛选
其次,微软使用创新技术进行扩展,从13 亿参数的Phi-1.5开始,将知识逐渐嵌入到了27 亿参数的Phi-2 中。这种规模化知识迁移加速了训练收敛,并显着提升了 Phi-2 的基准测试分数。
以下是Phi-2和Phi-1.5之间的比较图,除了BBH(3-shot CoT)和MMLU(5-shot)之外,所有其他任务都是使用0-shot进行评估
训练细节
Phi-2 是一个基于Transformer 的模型,其目标是预测下一个词。它在合成数据集和网络数据集上进行了训练,使用了96 块A100 GPU,并花费了14 天的时间
Phi-2 是一个基础模型,没有通过人类反馈强化学习(RLHF) 进行对齐,也没有进行指令微调。尽管如此,与经过调整的现有开源模型相比,Phi-2 在毒性和偏见方面仍然表现得更好,如下图 3 所示。
实验评估
首先,该研究在学术基准上对 Phi-2 与常见语言模型进行了实验比较,涵盖多个类别,包括:
- Big Bench Hard (BBH) (3 shot with CoT)
- 常识推理(PIQA、WinoGrande、ARC easy and challenge、SIQA)、
- 语言理解(HellaSwag、OpenBookQA、MMLU(5-shot)、SQuADv2(2-shot)、BoolQ)
- 数学(GSM8k(8 shot))
- 编码(HumanEval、MBPP(3-shot))
Phi-2模型仅有27亿个参数,却在各种聚合基准上性能超越了7B和13B的Mistral模型和Llama2模型。值得一提的是,与庞大的25倍Llama2-70B模型相比,Phi-2在多步骤推理任务(即编码和数学)方面表现更出色
此外,尽管尺寸较小,但 Phi-2 的性能可以媲美最近由谷歌发布的 Gemini Nano 2
由于许多公共基准可能会泄漏到训练数据中,研究团队认为测试语言模型性能的最佳方法是在具体用例上对其进行测试。因此,该研究使用多个微软内部专有数据集和任务对 Phi-2 进行了评估,并再次将其与 Mistral 和 Llama-2 进行比较,平均而言,Phi-2 优于 Mistral-7B,Mistral-7B 优于 Llama2 模型(7B、13B、70B)。
研究团队还对常见的研究社区提示进行了广泛测试。Phi-2的表现与预期相符。例如,对于一个用于评估模型解决物理问题能力的提示(最近用于评估Gemini Ultra模型),Phi-2给出了以下结果:
以上是手机运行微软小模型胜过27亿参数的大模型的详细内容。更多信息请关注PHP中文网其他相关文章!

科学家已经广泛研究了人类和更简单的神经网络(如秀丽隐杆线虫中的神经网络),以了解其功能。 但是,出现了一个关键问题:我们如何使自己的神经网络与新颖的AI一起有效地工作

Google的双子座高级:新的订阅层即将到来 目前,访问Gemini Advanced需要$ 19.99/月Google One AI高级计划。 但是,Android Authority报告暗示了即将发生的变化。 最新的Google P中的代码

尽管围绕高级AI功能炒作,但企业AI部署中潜伏的巨大挑战:数据处理瓶颈。首席执行官庆祝AI的进步时,工程师努力应对缓慢的查询时间,管道超载,一个

处理文档不再只是在您的AI项目中打开文件,而是将混乱变成清晰度。诸如PDF,PowerPoints和Word之类的文档以各种形状和大小淹没了我们的工作流程。检索结构化

利用Google的代理开发套件(ADK)的力量创建具有现实世界功能的智能代理!该教程通过使用ADK来构建对话代理,并支持Gemini和GPT等各种语言模型。 w

摘要: 小型语言模型 (SLM) 专为效率而设计。在资源匮乏、实时性和隐私敏感的环境中,它们比大型语言模型 (LLM) 更胜一筹。 最适合专注型任务,尤其是在领域特异性、控制性和可解释性比通用知识或创造力更重要的情况下。 SLM 并非 LLMs 的替代品,但在精度、速度和成本效益至关重要时,它们是理想之选。 技术帮助我们用更少的资源取得更多成就。它一直是推动者,而非驱动者。从蒸汽机时代到互联网泡沫时期,技术的威力在于它帮助我们解决问题的程度。人工智能 (AI) 以及最近的生成式 AI 也不例

利用Google双子座的力量用于计算机视觉:综合指南 领先的AI聊天机器人Google Gemini扩展了其功能,超越了对话,以涵盖强大的计算机视觉功能。 本指南详细说明了如何利用

2025年的AI景观正在充满活力,而Google的Gemini 2.0 Flash和Openai的O4-Mini的到来。 这些尖端的车型分开了几周,具有可比的高级功能和令人印象深刻的基准分数。这个深入的比较


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

VSCode Windows 64位 下载
微软推出的免费、功能强大的一款IDE编辑器

SublimeText3 Linux新版
SublimeText3 Linux最新版

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

mPDF
mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),