搜索
首页科技周边人工智能让大型AI模型自主提问:GPT-4打破与人类对话的障碍,展现更高水平的表现

在最新的人工智能领域动态中,人工生成的提示(prompt)质量对大语言模型(LLM)的响应精度有着决定性影响。OpenAI 提出的建议指出,精确、详细且具体的问题对于这些大语言模型的表现至关重要。然而,普通用户是否能够确保他们的问题对于 LLM 来说足够清晰明了?

需要重新写的内容是:值得注意的是,人类在某些情境下的自然理解能力与机器的解读存在明显差异。例如,“偶数月” 这一概念,在人类看来很明显指的是二月、四月等月份,而GPT-4却可能将其误解为天数为偶数的月份。这不仅揭示了人工智能在理解日常语境上的局限性,也促使我们反思如何更有效地与这些大型语言模型进行交流。随着人工智能技术的不断进步,如何弥合人类与机器在语言理解方面的鸿沟,是一个未来研究的重要课题

关于此事,加利福尼亚大学洛杉矶分校(UCLA)的顾全全教授领导的通用人工智能实验室发布了一份研究报告,提出了一种创新的解决方案,针对大语言模型(如 GPT-4)在问题理解上的歧义问题。这项研究是由邓依荷、张蔚桐和陈子翔博士生完成的

让大型AI模型自主提问:GPT-4打破与人类对话的障碍,展现更高水平的表现


  • 论文地址:https://arxiv.org/pdf/2311.04205.pdf
  • 项目地址: https://uclaml.github.io/Rephrase-and-Respond

重写后的中文内容为:该方案的核心是让大型语言模型对提出的问题进行复述和扩写,以提高回答的准确性。研究发现,经过GPT-4重新表述的问题变得更加详细,问题格式也更清晰。这种复述和扩写的方法显著提高了模型的回答准确率。实验表明,一个经过良好复述的问题使得回答的准确率从原来的50%提高到接近100%。这一性能提升不仅展示了大型语言模型自我改进的潜力,也为人工智能如何更有效地处理和理解人类语言提供了新的视角

方法

基于以上的发现,研究者提出了一个简单但效果显著的提示词 (prompt):“Rephrase and expand the question, and respond”(简称为 RaR)。这一提示词直接提高了 LLM 回答问题的质量,展示了在问题处理上的一个重要提升。

让大型AI模型自主提问:GPT-4打破与人类对话的障碍,展现更高水平的表现

研究团队还提出了 RaR 的一种变体,称为 “Two-step RaR”,以充分利用像 GPT-4 这样的大模型复述问题的能力。这种方法遵循两个步骤:首先,针对给定的问题,使用一个专门的 Rephrasing LLM 生成一个复述问题;其次,将原始问题和复述后的问题结合起来,用于提示一个 Responding LLM 进行回答。

让大型AI模型自主提问:GPT-4打破与人类对话的障碍,展现更高水平的表现

结果

让大型AI模型自主提问:GPT-4打破与人类对话的障碍,展现更高水平的表现

研究人员进行了不同任务的实验,结果表明,无论是单步 RaR 还是两步 RaR,都能有效地提高 GPT4 的回答准确率。值得注意的是,RaR 在原本对 GPT-4 极具挑战性的任务上展现出了显著的改进效果,甚至在某些情况下准确率接近 100%。研究团队总结了以下两点关键结论:

1. 复述并扩写(RaR)提供了一种即插即用的黑箱式提示方法,能够有效地提高 LLM 在各种任务上的性能。

2. 在评估 LLM 在问答(QA)任务上的表现时,检查问题的质量至关重要。

让大型AI模型自主提问:GPT-4打破与人类对话的障碍,展现更高水平的表现

研究人员采用了Two-step RaR方法进行研究,以探究GPT-4、GPT-3.5和Vicuna-13b-v.15等不同模型的表现。实验结果表明,对于那些具备更复杂架构和更强大处理能力的模型,例如GPT-4,RaR方法可以显着提升其处理问题的准确性和效率。而对于较为简单的模型,例如Vicuna,尽管改进幅度较小,但仍然表明了RaR策略的有效性。基于此,研究人员进一步检查了不同模型复述后问题的质量。对于较小模型的复述问题,有时可能会扰乱问题的意图。而像GPT-4这样的高级模型提供的复述问题与人类的意图相符,并且可以增强其他模型的回答效果

让大型AI模型自主提问:GPT-4打破与人类对话的障碍,展现更高水平的表现

这一发现揭示了一个重要的现象:不同等级的语言模型复述的问题在质量和效果上存在差异。特别是像 GPT-4 这样的高级模型,它复述的问题不仅能够为自身提供更清晰的问题理解,还能够作为一种有效的输入,提高其他较小模型的性能。

与思维链(CoT)的区别

为了理解RaR 与思维链(CoT)之间的区别,研究人员提出了它们的数学表述,并阐明了RaR 在数学上与CoT 的不同之处,以及它们如何可以轻松结合。

让大型AI模型自主提问:GPT-4打破与人类对话的障碍,展现更高水平的表现

在深入探讨如何增强模型推理能力之前,这项研究指出应该提高问题的质量,以确保能正确评估模型的推理能力。例如,“硬币翻转”问题,人们发现GPT-4将“翻转(flip)”理解为随机抛掷的动作,与人类的意图不同。即使使用“让我们逐步思考”来引导模型进行推理,这种误解仍会在推理过程中存在。只有在澄清问题之后,大型语言模型才会回答预期的问题

让大型AI模型自主提问:GPT-4打破与人类对话的障碍,展现更高水平的表现

进一步的,研究人员注意到,除了问题文本之外,用于few-shot CoT 的问答示例也是由人类编写的。这就引发了一个问题:当这些人工构造的示例存在缺陷时,大语言模型(LLM)会作出怎样的反应?该研究提供了一个很有意思的例子,并发现不良的 few-shot CoT 示例可能会对 LLM 产生负面影响。以 “末尾字母连接” 任务为例,先前使用的问题示例在提高模型性能方面显示出了积极效果。然而,当提示逻辑发生变化,比如从找到末尾字母变成找到首位字母,GPT-4 却给出了错误的答案。这一现象突显了模型对人工示例的敏感性。

让大型AI模型自主提问:GPT-4打破与人类对话的障碍,展现更高水平的表现

研究人员发现,使用RaR,GPT-4 可以修正给定示例中的逻辑缺陷,从而提高few-shot CoT 的质量和稳健性

结论

人类和大型语言模型(LLM)之间的交流可能存在误解:人类看似清晰的问题,可能会被大型语言模型理解成其他问题。 UCLA研究团队提出了RaR这一新颖方法,该方法促使LLM先复述并澄清问题,然后再回答,从而解决了这个问题

RaR 的有效性已经通过在多个基准数据集上进行的实验评估得到证实。进一步的分析结果显示,通过复述问题可以提升问题质量,而这种提升效果可以在不同的模型之间转移

对于未来的展望来说,预计类似于RaR 这样的方法将不断完善,同时与CoT 等其他方法的整合将为人类和大型语言模型之间的互动提供更准确、更有效的方式,最终拓展AI 解释和推理能力的边界

以上是让大型AI模型自主提问:GPT-4打破与人类对话的障碍,展现更高水平的表现的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文转载于:51CTO.COM。如有侵权,请联系admin@php.cn删除
拥抱面部是否7B型号奥林匹克赛车击败克劳德3.7?拥抱面部是否7B型号奥林匹克赛车击败克劳德3.7?Apr 23, 2025 am 11:49 AM

拥抱Face的OlympicCoder-7B:强大的开源代码推理模型 开发以代码为中心的语言模型的竞赛正在加剧,拥抱面孔与强大的竞争者一起参加了比赛:OlympicCoder-7B,一种产品

4个新的双子座功能您可以错过4个新的双子座功能您可以错过Apr 23, 2025 am 11:48 AM

你们当中有多少人希望AI可以做更多的事情,而不仅仅是回答问题?我知道我有,最近,我对它的变化感到惊讶。 AI聊天机器人不仅要聊天,还关心创建,研究

Camunda为经纪人AI编排编写了新的分数Camunda为经纪人AI编排编写了新的分数Apr 23, 2025 am 11:46 AM

随着智能AI开始融入企业软件平台和应用程序的各个层面(我们必须强调的是,既有强大的核心工具,也有一些不太可靠的模拟工具),我们需要一套新的基础设施能力来管理这些智能体。 总部位于德国柏林的流程编排公司Camunda认为,它可以帮助智能AI发挥其应有的作用,并与新的数字工作场所中的准确业务目标和规则保持一致。该公司目前提供智能编排功能,旨在帮助组织建模、部署和管理AI智能体。 从实际的软件工程角度来看,这意味着什么? 确定性与非确定性流程的融合 该公司表示,关键在于允许用户(通常是数据科学家、软件

策划的企业AI体验是否有价值?策划的企业AI体验是否有价值?Apr 23, 2025 am 11:45 AM

参加Google Cloud Next '25,我渴望看到Google如何区分其AI产品。 有关代理空间(此处讨论)和客户体验套件(此处讨论)的最新公告很有希望,强调了商业价值

如何为抹布找到最佳的多语言嵌入模型?如何为抹布找到最佳的多语言嵌入模型?Apr 23, 2025 am 11:44 AM

为您的检索增强发电(RAG)系统选择最佳的多语言嵌入模型 在当今的相互联系的世界中,建立有效的多语言AI系统至关重要。 强大的多语言嵌入模型对于RE至关重要

麝香:奥斯汀的机器人需要每10,000英里进行干预麝香:奥斯汀的机器人需要每10,000英里进行干预Apr 23, 2025 am 11:42 AM

特斯拉的Austin Robotaxi发射:仔细观察Musk的主张 埃隆·马斯克(Elon Musk)最近宣布,特斯拉即将在德克萨斯州奥斯汀推出的Robotaxi发射,最初出于安全原因部署了一支小型10-20辆汽车,并有快速扩张的计划。 h

AI震惊的枢轴:从工作工具到数字治疗师和生活教练AI震惊的枢轴:从工作工具到数字治疗师和生活教练Apr 23, 2025 am 11:41 AM

人工智能的应用方式可能出乎意料。最初,我们很多人可能认为它主要用于代劳创意和技术任务,例如编写代码和创作内容。 然而,哈佛商业评论最近报道的一项调查表明情况并非如此。大多数用户寻求人工智能的并非是代劳工作,而是支持、组织,甚至是友谊! 报告称,人工智能应用案例的首位是治疗和陪伴。这表明其全天候可用性以及提供匿名、诚实建议和反馈的能力非常有价值。 另一方面,营销任务(例如撰写博客、创建社交媒体帖子或广告文案)在流行用途列表中的排名要低得多。 这是为什么呢?让我们看看研究结果及其对我们人类如何继续将

公司竞争AI代理的采用公司竞争AI代理的采用Apr 23, 2025 am 11:40 AM

AI代理商的兴起正在改变业务格局。 与云革命相比,预计AI代理的影响呈指数增长,有望彻底改变知识工作。 模拟人类决策的能力

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

PhpStorm Mac 版本

PhpStorm Mac 版本

最新(2018.2.1 )专业的PHP集成开发工具

螳螂BT

螳螂BT

Mantis是一个易于部署的基于Web的缺陷跟踪工具,用于帮助产品缺陷跟踪。它需要PHP、MySQL和一个Web服务器。请查看我们的演示和托管服务。

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

MinGW - 适用于 Windows 的极简 GNU

MinGW - 适用于 Windows 的极简 GNU

这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。

WebStorm Mac版

WebStorm Mac版

好用的JavaScript开发工具