搜索
首页后端开发Python教程如何实现Python底层技术的数据可视化

如何实现Python底层技术的数据可视化

Nov 08, 2023 am 08:21 AM
python数据可视化底层技术

如何实现Python底层技术的数据可视化

在当今人工智能和大数据时代,数据可视化成为了数据分析应用中的一个非常重要的环节。数据可视化能够帮助我们更加直观地理解数据,发现数据中的规律和异常,同时也能够帮助我们更加清晰地向他人传递自己的数据分析。

Python 是当前被广泛使用的编程语言之一,其在数据分析和数据挖掘领域表现非常出色。Python 提供了丰富的数据可视化库,例如Matplotlib、Seaborn、Bokeh等。其中,Matplotlib是Python中最著名的数据可视化库之一,其提供了极其丰富的可视化功能,但是在Matplotlib底层的数据可视化核心技术上,官方文档并不是非常详细,很多开发者可能并不了解Matplotlib的底层技术是如何实现的。因此,本文将重点介绍如何使用Python底层技术实现数据可视化,并提供具体的代码示例。

Matplotlib 底层技术的实现

Matplotlib 是Python中广泛使用的数据可视化库,底层是基于pyplot。

我们通常先导入可视化库,然后通过plot() 函数创建图形实例,再通过一系列函数来创建和展示图形。

下面给出一个简单的例子,展示如何在 Python 中使用 Matplotlib 库绘制一条以 x 轴为横轴,y 轴为纵轴的坐标曲线图。

import matplotlib.pyplot as plt
import numpy as np

# 生成X轴的范围是(-π,π)内的等差数列
x = np.linspace(-np.pi,np.pi,256,endpoint=True)

# 计算cos(x)和sin(x)的值
C,S = np.cos(x), np.sin(x)

#创建画布和子图
fig,ax = plt.subplots()

# 画出cos(x)和sin(x)的曲线图
ax.plot(x,C,label='cos(x)')
ax.plot(x,S,label='sin(x)')

# 设置标题,x轴,y轴的名称
ax.set_title('Cos and Sin Function')
ax.set_xlabel('X Axis')
ax.set_ylabel('Y Axis')

# 设置图例
ax.legend()

# 显示图形
plt.show()

通过上面的代码,可以很容易地绘制出一条以 x 轴为横轴,y 轴为纵轴的坐标曲线图。

Matplotlib 底层技术的实现过程

在上面的代码中,我们首先生成了x轴的取值范围,然后计算出了cos(x)和sin(x)的值。接着,我们创建了一个画布和一个子图,然后使用plot()函数进行绘图操作。最后,我们通过一些函数设置图形的标题、x/y轴名称和图例,然后调用show()函数来显示出画布实例。

这其中,matplotlib.pyplot 子库是 Matplotlib 库下的绘图模块,它提供了在 NumPy 数组上作图的各种功能。对于 Matplotlib 底层技术的实现,可以通过两个方面来理解,即 FigureCanvas 和 Renderer,这两者分别是 Matplotlib 中的画布和渲染器对象。

FigureCanvas 是 Matplotlib 中的一个面向对象的图形显示类,它负责和绘图设备进行交互,将绘图结果输出到显示屏上。在上述例子中,我们通过plt.subplots()创建了一个Figure,即画布对象。而后续的绘图操作都是在这个画布上进行的。

Renderer 是 Matplotlib 中的一个渲染器对象,它负责将绘图的线条、点、文字等绘制成图像,即在画布上进行渲染。在上述例子中,我们使用了ax.plot()函数来绘制cos(x)和sin(x)的曲线,而这个函数实际上是使用了一个渲染器对象来绘制图形。在这个过程中,首先调用Axis X/Y Limiter来确定每个坐标轴上的数据范围,再通过Scaler来将原始数据转换为画布上的坐标,最后通过Renderer来实现真正的绘图操作。

Seaborn 底层技术的实现

Seaborn 是一个基于 Matplotlib 的更高级别的绘图库,它提供了更加简单易用的API,同时也保留了Matplotlib中底层的绘图技术,可以说 Seaborn是Matplotlib的补充和增强。

我们以绘制单变量的直方图为例,来展示使用Seaborn库的具体代码示例。这个例子将会使用Seaborn库内置的数据集"mpg"。

import seaborn as sns

# 设置Seaborn图库的风格和背景颜色
sns.set(style='whitegrid', palette='pastel')

# 读取数据
mpg = sns.load_dataset("mpg")

# 绘制直方图,并设置额外参数
sns.distplot(mpg['mpg'], bins=20, kde=True, rug=True)

# 设置图形标题以及X轴,Y轴的标签
plt.title('Histogram of mpg ($mu=23.45, ; sigma=7.81$)')
plt.xlabel('MPG')
plt.ylabel('Frequency')

# 显示图形
plt.show()

通过上述代码,可以绘制出一个展示mpg数据分布情况的直方图。

Seaborn 底层技术的实现过程

在上面的代码中,我们首先设置了 Seaborn 图库的风格和背景颜色,接着读取了Seaborn中自带的 mpg 数据集。然后,我们使用sns.distplot()函数绘制了一个直方图,同时设置了一些额外的参数来调整图形效果。最后,我们使用plt.title()、plt.xlabel()和plt.ylabel()函数来设置图形的标题、x/y轴名称等信息,然后调用plt.show()函数来展示出图形。

Seaborn 底层技术的实现过程类似于Matplotlib,也是通过 FigureCanvas 和 Renderer 来实现绘图的。在Seaborn底层技术中,FigureCanvas对象是通过 FacetGrid 来创建的,而绘图就是基于这个画布对象来进行的。同时,Seaborn库中的绘图主要是通过AxesSubplot类来实现。这个类是Matplotlib中的Axes类的子类,但是它在设计上更加高效和易用,因此被Seaborn作为底层绘图技术的主要实现方式。

Bokeh 底层技术的实现

Bokeh 是一个用于数据可视化和探索性分析的 Python 库,其具有交互性、响应式和高效创建动态数据可视化的特点。Bokeh 底层技术中的绘制技术主要是基于JavaScript来实现的,因此能够实现更加交互式和动态的可视化效果。

下面展示一个简单的 Bokeh 代码示例,说明如何在 Python 中使用 Bokeh 库绘制一个5条折线图,其中使用 Bokeh 提供的工具箱来进行交互式操作。

from bokeh.plotting import figure, show
from bokeh.io import output_notebook

# 启用Jupyter Notebook绘图
output_notebook()

# 创建一个 Bokeh 图形对象
p = figure(title="Simple Line Graph")

# 创建折线图
x = [1, 2, 3, 4, 5]
y = [6, 7, 2, 4, 5]
p.line(x, y, legend="Line A", line_width=2)

y2 = [2, 3, 4, 5, 6]
p.line(x, y2, legend="Line B", line_width=2)

y3 = [4, 5, 1, 7, 8]
p.line(x, y3, legend="Line C", line_width=2)

y4 = [6, 2, 4, 8, 1]
p.line(x, y4, legend="Line D", line_width=2)

y5 = [5, 8, 6, 2, 4]
p.line(x, y5, legend="Line E", line_width=2)

# 添加工具箱
p.toolbar_location = "above"
p.toolbar.logo = "grey"

# 设置图形的X轴,Y轴以及图例
p.xaxis.axis_label = "X"
p.yaxis.axis_label = "Y"
p.legend.location = "bottom_right"

# 显示图形
show(p)

通过上述代码,可以绘制出一个包含5条折线的折线图,并且提供了一些 Bokeh 工具箱来提供交互式操作。

Bokeh 底层技术的实现过程

Bokeh 底层技术的实现过程中,最核心的部分就是基于 JavaScript 来实现绘图。在上述代码中,我们主要使用了 Bokeh 的 figure()函数来创建一个 Bokeh 图形对象。同时,我们也使用了 Bokeh 提供的 line()函数来创建折线图,并且添加了一些工具箱和额外的功能,如工具箱的位置、X轴/Y轴的名称和图例的位置等等。

在Bokeh 底层技术的实现过程中,将Python代码转换为JavaScript代码非常重要。Bokeh 将Python代码转换为 JavaScript 代码,然后使用 Web 技术在前端绘图。Bokeh 库中的 BokehJS 是使用 TypeScript 编写的 JavaScript 库,它实现了所有 Bokeh 的绘图功能。因此,在使用Bokeh库绘制数据可视化时,我们也需要对比对JavaScript进行一些调试和定制。

小结

数据可视化是一个重要的环节,而Python通过各种底层技术提供了多种数据可视化库,其中最为流行的有Matplotlib、Seaborn和Bokeh等。这些库都支持Python本身的各种数据类型,并且能够提供非常高效,简洁和灵活的绘制方法。

本文主要介绍了使用Python底层技术实现数据可视化的方法,并提供了各库中的具体代码示例。通过学习这些底层技术,可以更加深入地了解Python数据可视化库背后的原理和细节。

以上是如何实现Python底层技术的数据可视化的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
Python脚本可能无法在UNIX上执行的一些常见原因是什么?Python脚本可能无法在UNIX上执行的一些常见原因是什么?Apr 28, 2025 am 12:18 AM

Python脚本在Unix系统上无法运行的原因包括:1)权限不足,使用chmod xyour_script.py赋予执行权限;2)Shebang行错误或缺失,应使用#!/usr/bin/envpython;3)环境变量设置不当,可打印os.environ调试;4)使用错误的Python版本,可在Shebang行或命令行指定版本;5)依赖问题,使用虚拟环境隔离依赖;6)语法错误,使用python-mpy_compileyour_script.py检测。

举一个场景的示例,其中使用Python数组比使用列表更合适。举一个场景的示例,其中使用Python数组比使用列表更合适。Apr 28, 2025 am 12:15 AM

使用Python数组比列表更适合处理大量数值数据。1)数组更节省内存,2)数组对数值运算更快,3)数组强制类型一致性,4)数组与C语言数组兼容,但在灵活性和便捷性上不如列表。

在Python中使用列表与数组的性能含义是什么?在Python中使用列表与数组的性能含义是什么?Apr 28, 2025 am 12:10 AM

列表列表更好的forflexibility andmixDatatatypes,何时出色的Sumerical Computitation sand larged数据集。1)不可使用的列表xbilese xibility xibility xibility xibility xibility xibility xibility xibility xibility xibility xibles and comply offrequent elementChanges.2)

Numpy如何处理大型数组的内存管理?Numpy如何处理大型数组的内存管理?Apr 28, 2025 am 12:07 AM

numpymanagesmemoryforlargearraysefefticefticefipedlyuseviews,副本和内存模拟文件.1)viewsAllowSinglicingWithOutCopying,直接modifytheoriginalArray.2)copiesCanbecopy canbecreatedwitheDedwithTheceDwithThecevithThece()methodervingdata.3)metservingdata.3)memore memore-mappingfileShessandAstaStaStstbassbassbassbassbassbassbassbassbassbassbb

哪个需要导入模块:列表或数组?哪个需要导入模块:列表或数组?Apr 28, 2025 am 12:06 AM

Listsinpythondonotrequireimportingamodule,helilearraysfomthearraymoduledoneedanimport.1)列表列表,列表,多功能和canholdMixedDatatatepes.2)arraysaremoremoremoremoremoremoremoremoremoremoremoremoremoremoremoremoremeremeremeremericdatabuteffeftlessdatabutlessdatabutlessfiblesible suriplyElsilesteletselementEltecteSemeTemeSemeSemeSemeTypysemeTypysemeTysemeTypysemeTypepe。

可以在Python数组中存储哪些数据类型?可以在Python数组中存储哪些数据类型?Apr 27, 2025 am 12:11 AM

pythonlistscanStoryDatatepe,ArrayModulearRaysStoreOneType,and numpyArraySareSareAraysareSareAraysareSareComputations.1)列出sareversArversAtileButlessMemory-Felide.2)arraymoduleareareMogeMogeNareSaremogeNormogeNoreSoustAta.3)

如果您尝试将错误的数据类型的值存储在Python数组中,该怎么办?如果您尝试将错误的数据类型的值存储在Python数组中,该怎么办?Apr 27, 2025 am 12:10 AM

WhenyouattempttostoreavalueofthewrongdatatypeinaPythonarray,you'llencounteraTypeError.Thisisduetothearraymodule'sstricttypeenforcement,whichrequiresallelementstobeofthesametypeasspecifiedbythetypecode.Forperformancereasons,arraysaremoreefficientthanl

Python标准库的哪一部分是:列表或数组?Python标准库的哪一部分是:列表或数组?Apr 27, 2025 am 12:03 AM

pythonlistsarepartofthestAndArdLibrary,herilearRaysarenot.listsarebuilt-In,多功能,和Rused ForStoringCollections,而EasaraySaraySaraySaraysaraySaraySaraysaraySaraysarrayModuleandleandleandlesscommonlyusedDduetolimitedFunctionalityFunctionalityFunctionality。

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

螳螂BT

螳螂BT

Mantis是一个易于部署的基于Web的缺陷跟踪工具,用于帮助产品缺陷跟踪。它需要PHP、MySQL和一个Web服务器。请查看我们的演示和托管服务。

Atom编辑器mac版下载

Atom编辑器mac版下载

最流行的的开源编辑器

VSCode Windows 64位 下载

VSCode Windows 64位 下载

微软推出的免费、功能强大的一款IDE编辑器

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

EditPlus 中文破解版

EditPlus 中文破解版

体积小,语法高亮,不支持代码提示功能