搜索
首页科技周边人工智能GPT-4通过DeepMind的训练,提高了13.7%的准确率,实现了更好的归纳和演绎能力

当前,大型语言模型(LLM)在推理任务上展示了惊人的能力,尤其是在提供样例和中间步骤的情况下。然而,prompt 方法通常依赖于LLM中的隐含知识,当隐含知识存在错误或与任务不一致时,LLM可能会给出错误的答案

GPT-4通过DeepMind的训练,提高了13.7%的准确率,实现了更好的归纳和演绎能力

现在,来自谷歌、Mila 研究所等研究机构的研究者们联合探索了一种新的方法 - 让LLM学习推理规则,并提出了一种名为假设到理论(Hypotheses-to-Theories,HtT)的新框架。这种新方法不仅改进了多步推理,还具有可解释性和可迁移性等优势

GPT-4通过DeepMind的训练,提高了13.7%的准确率,实现了更好的归纳和演绎能力

论文地址:https://arxiv.org/abs/2310.07064

根据对数值推理和关系推理问题的实验结果显示,HtT方法对现有的提示方法进行了改进,准确率提高了11-27%。同时,所学到的规则也可以迁移到不同的模型或同一问题的不同形式中

方法简介

总的来说,HtT 框架包含两个阶段 —— 归纳阶段和演绎阶段,类似于传统机器学习中的训练和测试。

GPT-4通过DeepMind的训练,提高了13.7%的准确率,实现了更好的归纳和演绎能力

在归纳阶段,LLM 首先需要生成并验证一组训练样例的规则。本研究采用 CoT 来声明规则并推导答案,评估规则的出现频率和准确性,收集经常出现且导致正确答案的规则,形成规则库

有了良好的规则库,下一步该研究如何应用这些规则来解决问题。为此,在演绎阶段,该研究在 prompt 中添加规则库,并要求 LLM 从规则库中检索规则来进行演绎,将隐式推理转换为显式推理。

然而,研究发现,即使是非常强大的LLM(例如GPT-4),也很难在每一步都检索到正确的规则。因此,该研究开发了XML标记技巧,以增强LLM的上下文检索能力

GPT-4通过DeepMind的训练,提高了13.7%的准确率,实现了更好的归纳和演绎能力

实验结果

为了评估 HtT,该研究针对两个多步骤推理问题进行了基准测试。实验结果表明,HtT 改进了少样本 prompt 方法。作者还进行了广泛的消融研究,以提供对 HtT 更全面的了解。

他们在数值推理和关系推理问题上评估新方法。在数值推理中,他们观察到 GPT-4 的准确率提高了 21.0%。在关系推理中,GPT-4 的准确性提高了 13.7%,GPT-3.5 则获益更多,性能提高了一倍。性能增益主要来自于规则幻觉的减少。

GPT-4通过DeepMind的训练,提高了13.7%的准确率,实现了更好的归纳和演绎能力

具体来说,下表 1 显示了在算术的 base-16、base-11 和 base-9 数据集上的结果。在所有 base 系统中,0-shot CoT 在两个 LLM 中的性能都最差。

GPT-4通过DeepMind的训练,提高了13.7%的准确率,实现了更好的归纳和演绎能力

表 2 呈现了在 CLUTRR 上比较不同方法的结果。可以观察到,在 GPT3.5 和 GPT4 中,0-shot CoT 的性能最差。对于 few-shot 提示方法,CoT 和 LtM 的性能相似。在平均准确率方面,HtT 始终比两种模型的提示方法高出 11.1-27.2%。值得注意的是,GPT3.5 在检索 CLUTRR 规则方面并不差,而且比 GPT4 从 HtT 中获益更多,这可能是因为 CLUTRR 中的规则比算术中的规则少。

值得一提的是,使用 GPT4 的规则,GPT3.5 上的 CoT 性能提高了 27.2%,是 CoT 性能的两倍多,接近 GPT4 上的 CoT 性能。因此,作者认为 HtT 可以作为从强 LLM 到弱 LLM 的一种新的知识蒸馏形式。

GPT-4通过DeepMind的训练,提高了13.7%的准确率,实现了更好的归纳和演绎能力

表 3 显示,HtT 显着提高了 GPT-4(文本版)的性能。对于 GPT3.5 来说,这种改进并不显着,因为在处理文本输入时,它经常产生除规则幻觉以外的错误。

GPT-4通过DeepMind的训练,提高了13.7%的准确率,实现了更好的归纳和演绎能力

GPT-4通过DeepMind的训练,提高了13.7%的准确率,实现了更好的归纳和演绎能力

以上是GPT-4通过DeepMind的训练,提高了13.7%的准确率,实现了更好的归纳和演绎能力的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文转载于:51CTO.COM。如有侵权,请联系admin@php.cn删除
解读CRISP-ML(Q):机器学习生命周期流程解读CRISP-ML(Q):机器学习生命周期流程Apr 08, 2023 pm 01:21 PM

译者 | 布加迪审校 | 孙淑娟目前,没有用于构建和管理机器学习(ML)应用程序的标准实践。机器学习项目组织得不好,缺乏可重复性,而且从长远来看容易彻底失败。因此,我们需要一套流程来帮助自己在整个机器学习生命周期中保持质量、可持续性、稳健性和成本管理。图1. 机器学习开发生命周期流程使用质量保证方法开发机器学习应用程序的跨行业标准流程(CRISP-ML(Q))是CRISP-DM的升级版,以确保机器学习产品的质量。CRISP-ML(Q)有六个单独的阶段:1. 业务和数据理解2. 数据准备3. 模型

2023年机器学习的十大概念和技术2023年机器学习的十大概念和技术Apr 04, 2023 pm 12:30 PM

机器学习是一个不断发展的学科,一直在创造新的想法和技术。本文罗列了2023年机器学习的十大概念和技术。 本文罗列了2023年机器学习的十大概念和技术。2023年机器学习的十大概念和技术是一个教计算机从数据中学习的过程,无需明确的编程。机器学习是一个不断发展的学科,一直在创造新的想法和技术。为了保持领先,数据科学家应该关注其中一些网站,以跟上最新的发展。这将有助于了解机器学习中的技术如何在实践中使用,并为自己的业务或工作领域中的可能应用提供想法。2023年机器学习的十大概念和技术:1. 深度神经网

基于因果森林算法的决策定位应用基于因果森林算法的决策定位应用Apr 08, 2023 am 11:21 AM

译者 | 朱先忠​审校 | 孙淑娟​在我之前的​​博客​​中,我们已经了解了如何使用因果树来评估政策的异质处理效应。如果你还没有阅读过,我建议你在阅读本文前先读一遍,因为我们在本文中认为你已经了解了此文中的部分与本文相关的内容。为什么是异质处理效应(HTE:heterogenous treatment effects)呢?首先,对异质处理效应的估计允许我们根据它们的预期结果(疾病、公司收入、客户满意度等)选择提供处理(药物、广告、产品等)的用户(患者、用户、客户等)。换句话说,估计HTE有助于我

使用PyTorch进行小样本学习的图像分类使用PyTorch进行小样本学习的图像分类Apr 09, 2023 am 10:51 AM

近年来,基于深度学习的模型在目标检测和图像识别等任务中表现出色。像ImageNet这样具有挑战性的图像分类数据集,包含1000种不同的对象分类,现在一些模型已经超过了人类水平上。但是这些模型依赖于监督训练流程,标记训练数据的可用性对它们有重大影响,并且模型能够检测到的类别也仅限于它们接受训练的类。由于在训练过程中没有足够的标记图像用于所有类,这些模型在现实环境中可能不太有用。并且我们希望的模型能够识别它在训练期间没有见到过的类,因为几乎不可能在所有潜在对象的图像上进行训练。我们将从几个样本中学习

LazyPredict:为你选择最佳ML模型!LazyPredict:为你选择最佳ML模型!Apr 06, 2023 pm 08:45 PM

本文讨论使用LazyPredict来创建简单的ML模型。LazyPredict创建机器学习模型的特点是不需要大量的代码,同时在不修改参数的情况下进行多模型拟合,从而在众多模型中选出性能最佳的一个。 摘要本文讨论使用LazyPredict来创建简单的ML模型。LazyPredict创建机器学习模型的特点是不需要大量的代码,同时在不修改参数的情况下进行多模型拟合,从而在众多模型中选出性能最佳的一个。​本文包括的内容如下:​简介​LazyPredict模块的安装​在分类模型中实施LazyPredict

Mango:基于Python环境的贝叶斯优化新方法Mango:基于Python环境的贝叶斯优化新方法Apr 08, 2023 pm 12:44 PM

译者 | 朱先忠审校 | 孙淑娟引言模型超参数(或模型设置)的优化可能是训练机器学习算法中最重要的一步,因为它可以找到最小化模型损失函数的最佳参数。这一步对于构建不易过拟合的泛化模型也是必不可少的。优化模型超参数的最著名技术是穷举网格搜索和随机网格搜索。在第一种方法中,搜索空间被定义为跨越每个模型超参数的域的网格。通过在网格的每个点上训练模型来获得最优超参数。尽管网格搜索非常容易实现,但它在计算上变得昂贵,尤其是当要优化的变量数量很大时。另一方面,随机网格搜索是一种更快的优化方法,可以提供更好的

人工智能自动获取知识和技能,实现自我完善的过程是什么人工智能自动获取知识和技能,实现自我完善的过程是什么Aug 24, 2022 am 11:57 AM

实现自我完善的过程是“机器学习”。机器学习是人工智能核心,是使计算机具有智能的根本途径;它使计算机能模拟人的学习行为,自动地通过学习来获取知识和技能,不断改善性能,实现自我完善。机器学习主要研究三方面问题:1、学习机理,人类获取知识、技能和抽象概念的天赋能力;2、学习方法,对生物学习机理进行简化的基础上,用计算的方法进行再现;3、学习系统,能够在一定程度上实现机器学习的系统。

超参数优化比较之网格搜索、随机搜索和贝叶斯优化超参数优化比较之网格搜索、随机搜索和贝叶斯优化Apr 04, 2023 pm 12:05 PM

本文将详细介绍用来提高机器学习效果的最常见的超参数优化方法。 译者 | 朱先忠​审校 | 孙淑娟​简介​通常,在尝试改进机器学习模型时,人们首先想到的解决方案是添加更多的训练数据。额外的数据通常是有帮助(在某些情况下除外)的,但生成高质量的数据可能非常昂贵。通过使用现有数据获得最佳模型性能,超参数优化可以节省我们的时间和资源。​顾名思义,超参数优化是为机器学习模型确定最佳超参数组合以满足优化函数(即,给定研究中的数据集,最大化模型的性能)的过程。换句话说,每个模型都会提供多个有关选项的调整“按钮

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
2 周前By尊渡假赌尊渡假赌尊渡假赌
仓库:如何复兴队友
4 周前By尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island冒险:如何获得巨型种子
4 周前By尊渡假赌尊渡假赌尊渡假赌

热工具

MinGW - 适用于 Windows 的极简 GNU

MinGW - 适用于 Windows 的极简 GNU

这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。

DVWA

DVWA

Damn Vulnerable Web App (DVWA) 是一个PHP/MySQL的Web应用程序,非常容易受到攻击。它的主要目标是成为安全专业人员在合法环境中测试自己的技能和工具的辅助工具,帮助Web开发人员更好地理解保护Web应用程序的过程,并帮助教师/学生在课堂环境中教授/学习Web应用程序安全。DVWA的目标是通过简单直接的界面练习一些最常见的Web漏洞,难度各不相同。请注意,该软件中

Atom编辑器mac版下载

Atom编辑器mac版下载

最流行的的开源编辑器

VSCode Windows 64位 下载

VSCode Windows 64位 下载

微软推出的免费、功能强大的一款IDE编辑器

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具