ML 是指计算机算法的研究,它们能够在没有明确人为编程的情况下进行学习。它们通过摄取和处理数据来帮助识别模式和趋势。
机器学习在医疗保健、市场营销、医疗服务、物流、人力资源、能源、保护、电子商务、制造业、艺术与创意、金融、交通运输、汽车、政府监控、保险以及数字媒体和娱乐等领域普遍适用。像苹果、谷歌、微软、IBM等大型企业都广泛使用机器学习。除了这些科技巨头,小型和中型新创企业也依赖机器学习。大多数科技公司利用人工智能来通过利用客户体验来提升客户满意度。
C++是一种面向对象的编程语言。在上世纪80年代作为系统语言(用于构建系统设计)被推出,它进展复杂但在执行基本任务方面表现出色。
C++ has numerous applications generally because it is a low-level language. This implies it speaks with machines near their local code. (The option is an abstract, high-level language similar to Python, which is more straightforward to utilize but slower to execute). Being low-level, C++ has a precarious expectation to learn and adapt. Be that as it may, it is likewise brilliant for memory control. Speed here is vital.
关于ML,C++客户端可以以细粒度控制计算并管理内存资源。这就是为什么它非常适合像人工智能这样需要快速分析大型数据集的领域。不过,它并不适合快速原型开发,并且仍然是数据专家和人工智能工程师中的首选。
由于C++对执行具有严格的控制,因此在需要高响应性的领域如机械技术和游戏中非常受欢迎。这些也是人工智能快速发展的领域。此外,C++还有一些机器学习和人工智能库。
It is a lightweight, flexible, simple programming language that can drive complex prearranging and web applications whenever utilized in a powerful structure. It was made in 1991 as a broadly useful programming language, and developers have consistently respected it as a basic, simple to learn, and its prevalence exceeds all rational limitations. It upholds numerous structures and libraries, making it adaptable.
Python开发人员一直在使用这种模式,因为它是人工智能、信息分析和网站开发领域最受追捧的语言。开发人员发现编码快速且易于学习。大家都喜欢Python,因为它在编码时允许很多灵活性。由于其灵活性和开源性质,它拥有许多可视化包和重要的核心库,如sklearn、seaborn等。这些强大的库使编码成为一项简单的任务,并使机器能够发现更多。
Python支持面向对象、命令式、函数式和过程改进标准。两个非常流行的人工智能库,Python开发者使用的是TensorFlow和Scikit。它非常适合原型设计、情感分析、科学计算、自然语言处理和数据科学。
Python has become a well-known language for AI and ML development. With a straightforward language structure, broad library system, and various local areas of engineers, Python offers a substantially more reflexive methodology for sprouting developers.
The language is profoundly adaptable, and its standard library incorporates modules from image processing to regular language handling.
ML is a well-known application for Python. It has become the norm for some organizations since it allows them to fabricate arrangements rapidly without putting resources into exorbitant frameworks. The accessibility of libraries like sci-kit-learn, TensorFlow, and Keras makes it simple to construct models without any preparation.
R是一种著名的开源信息感知驱动语言,在人工智能领域具有很高的地位。R基金会和R开发中心团队正在管理它。它提供了对命令行和其他IDE的支持,易于使用,并提供了各种工具,以便更好地管理库和绘制更好的图表。
R has a decent resource pool because of notable elements that help create ML applications. Its use for information and measurements has been significant. Viable ML arrangements can be conveyed with their weighty registering abilities. Being designed based on language, it is utilized by information researchers for examining information through charts, by tremendous combinations, particularly in the biomedical field.
R被称为执行机器学习系统,如决策树形成、回归、分类等。由于其功能特点和统计学,它已成为一种动态、基础、有用的语言。它支持Windows、Linux和操作系统X等工作框架。
ML is the most exciting field in software engineering at present. The capacity to construct wise frameworks without any preparation utilizing calculations can change ventures like manufacturing, healthcare, finance, and transportation.
尽管如此,它需要大量的编程知识和技能。很容易找到那些对统计学和编程都很了解的人来构建相关模型。
R gives an environment climate to doing this sort of work. It's free, generally utilized, and has a developing, lively local area.
机器学习是研究无需人类输入的计算机算法的领域。机器学习具有无数的应用,从自然语言处理到计算机视觉,再到预测分析等等。低级语言(如R、C++或Java)提供更高的速度,但学习起来更加困难。高级语言(如JavaScript和Python)更易于使用,但执行速度较慢。Python是机器学习和数据分析的重要语言。对于初学者来说,它是速度和能力兼具的最佳选择。
以上是学习机器学习,哪种语言更好:C++、Python还是R?的详细内容。更多信息请关注PHP中文网其他相关文章!