搜索
首页科技周边人工智能​基于智能数据库的自助式机器学习

​基于智能数据库的自助式机器学习

译者 | 张怡

审校 | 梁策 孙淑娟

1.如何成为一个IDO?

IDO(insight-driven organization)指洞察力驱动(以信息为导向)的组织。要成为一个IDO,首先需要数据以及操作和分析数据的工具;其次是具有适当经验的数据分析师或数据科学家;最后还需要找到一种技术或者方法,从而在整个公司实施洞察力驱动的决策过程。

机器学习是能最大限度发挥数据优势的技术。ML流程首先使用数据训练预测模型,训练成功之后来解决与数据相关的问题。其中,人工神经网络是最有效的技术,它的设计源自我们目前对人类大脑工作方式的理解。考虑到人们目前拥有的巨大计算资源,它通过大量数据训练可以产生令人难以置信的模型。

企业可以使用各种自助化软件和脚本完成不同的任务,从而避免人为错误的情况。同样,你也完全可以基于数据进行决策来避免当中的人为错误。

2.为什么企业在采用人工智能方面进展缓慢?

使用人工智能或机器学习来处理数据的企业仅是少数。美国人口普查局(US Census Bureau)表示,截至2020年,只有不到10%的美国企业采用了机器学习(主要是大公司)。

采用ML的障碍包括:

  • 人工智能在取代人类之前还有大量工作尚未完成。首先是许多企业缺乏且请不起专业人员。数据科学家在这一领域备受推崇,但他们的雇佣成本也是最高的。
  • 缺乏可用数据、数据安全性以及耗时的ML算法实现。
  • 企业很难创造一个环境,从而让数据及其优势得到发挥。这种环境需要相关的工具、过程和策略。

3.机器学习的推广只有自动ML(AutoML)工具是不够的

自动ML平台虽然有着很光明的未来,但其覆盖面目前还相当有限,同时关于自动ML能否很快取代数据科学家的说法也有争论。

如果想要在公司成功部署自助化机器学习,AutoML工具确实是至关重要的,但过程、方法和策略也必须重视。AutoML平台只是工具,大多数ML专家认为这是不够的。

4.分解机器学习过程

​基于智能数据库的自助式机器学习

任何ML进程都从数据开始。人们普遍认为,数据准备是ML过程中最重要的环节,建模部分只是整个数据管道的一部分,同时通过AutoML工具得到简化。完整的工作流仍需要大量的工作来转换数据并将其提供给模型。数据准备和数据转换可谓工作中最耗时、最令人不愉快的部分。

此外,用于训练ML模型的业务数据也会定期更新。因此,它要求企业构建能够掌握复杂的工具和流程的复杂ETL管道,因此确保ML流程的连续和实时性也是一项具有挑战性的任务。

5.将ML与应用程序集成

假设现在我们已经构建了ML模型,然后需要将其部署。经典的部署方法将其视为应用层组件,如下图所示:

​基于智能数据库的自助式机器学习

它的输入是数据,输出是我们得到的预测。通过集成这些应用程序的API来使用ML模型的输出。仅从开发者的角度来看,这一切似乎很容易,但在考虑流程时就不是那么回事了。在一个庞大的组织中,与业务应用程序的任何集成和维护都相当麻烦。即使公司精通技术,任何代码更改请求都必须通过多级部门的特定审查和测试流程。这会对灵活性产生负面影响,并增加整个工作流的复杂性。

如果在测试各种概念和想法方面有足够的灵活性,那么基于ML的决策就会容易得多,因此人们会更喜欢具有自助服务功能的产品。

6.自助机器学习/智能数据库?

正如我们上面看到的,数据是ML进程的核心,现有的ML工具获取数据并返回预测结果,而这些预测也是数据的形式。

现在问题来了:

  • 为什么我们要把ML作为一个独立的应用程序,并在ML模型、应用程序和数据库之间实现复杂的集成呢?
  • 为什么不让ML成为数据库的核心功能呢?
  • 为什么不让ML模型通过标准的数据库语法(如SQL)可用呢?

让我们分析上述问题及其面临的挑战,从而找到ML解决方案。

挑战#1:复杂的数据集成和ETL管道

维护ML模型和数据库之间的复杂数据集成和ETL管道,是ML流程面临的最大挑战之一。

SQL是极佳的数据操作工具,所以我们可以通过将ML模型引入数据层来解决这个问题。换句话说,ML模型将在数据库中学习并返回预测。

挑战#2:ML模型与应用程序的集成

通过API将ML模型与业务应用程序集成是面临的另一个挑战。

业务应用程序和BI工具与数据库紧密耦合。因此,如果AutoML工具成为数据库的一部分,我们就可以使用标准SQL语法进行预测。接下来,ML模型和业务应用程序之间不再需要API集成,因为模型驻留在数据库中。

解决方案:在数据库中嵌入AutoML

在数据库中嵌入AutoML工具会带来很多好处,比如:

  • 任何使用数据并了解SQL的人(数据分析师或数据科学家)都可以利用机器学习的力量。
  • 软件开发人员可以更有效地将ML嵌入到业务工具和应用程序中。
  • 数据和模型之间以及模型和业务应用程序之间不需要复杂的集成。

这样一来,上述相对复杂的集成图表变更如下:

​基于智能数据库的自助式机器学习

它看起来更简单,也使ML过程更流畅高效。

7.如何实现自助式ML将模型作为虚拟数据库表

找到解决方案的下一步是来实施它。

为此,我们使用了一个叫做AI Tables的结构。它以虚拟表的形式将机器学习引入数据平台。它可以像其他数据库表一样创建,然后向应用程序、BI工具和DB客户端开放。我们通过简单地查询数据来进行预测。

​基于智能数据库的自助式机器学习

AI Tables最初由MindsDB开发,可以作为开源或托管云服务使用。他们集成了传统的SQL和NoSQL数据库,如Kafka和Redis。

8.使用AI Tables

AI Tables的概念使我们能够在数据库中执行ML过程,这样ML过程的所有步骤(即数据准备、模型训练和预测)都可以通过数据库进行。

  • 训练AI Tables

首先,用户要根据自己的需求创建一个AI Table,它类似于一个机器学习模型,包含了与源表的列等价的特征;然后通过AutoML引擎自助完成剩余的建模任务。后文还将举例说明。

  • 做预测

一旦创建了AI Table,它不需要任何进一步的部署就可以使用了。要进行预测,只需要在AI Table上运行一个标准SQL查询。

你可以逐个或分批地进行预测。AI Tables可以处理许多复杂的机器学习任务,如多元时间序列、检测异常等。

9.AI Tables工作示例

对于零售商来说,在适当的时间保证产品都有适当的库存是一项复杂的任务。当需求增长时,供给随之增加。基于这些数据和机器学习,我们可以预测给定的产品在给定的日期应该有多少库存,从而为零售商带来更多收益。

首先你需要跟踪以下信息,建立一张AI Table:

  • 产品售出日期(date_of_sale)
  • 产品售出店铺(shop)
  • 具体售出产品(product_code)
  • 产品售出数量(amount)

如下图所示:

​基于智能数据库的自助式机器学习

(1)训练AI Tables

要创建和训练AI Tables,你首先要允许MindsDB访问数据。详细说明可参考MindsDB文档( MindsDB documentation)。

AI Tables就像ML模型,需要使用历史数据来训练它们。

下面使用一个简单的SQL命令,训练一个AITable:

​基于智能数据库的自助式机器学习

让我们分析这个查询:

  • 使用MindsDB中的CREATE PREDICTOR语句。
  • 根据历史数据定义源数据库。
  • 根据历史数据表(historical_table)训练AI Table,所选列(column_1和column_2)是用来进行预测的特征。
  • AutoML自动完成剩下的建模任务。
  • MindsDB会识别每一列的数据类型,对其进行归一化和编码,并构建和训练ML模型。

同时,你可以看到每个预测的总体准确率和置信度,并估计哪些列(特征)对结果更重要。

在数据库中,我们经常需要处理涉及高基数的多元时间序列数据的任务。如果使用传统的方法,需要相当大的力气来创建这样的ML模型。我们需要对数据进行分组,并根据给定的时间、日期或时间戳数据字段对其进行排序。

例如,我们预测五金店卖出的锤子数量。那么,数据按商店和产品分组,并对每个不同的商店和产品组合作出预测。这就给我们带来了为每个组创建时间序列模型的问题。

这听起来工程浩大,但MindsDB提供了使用GROUP BY语句创建单个ML模型,从而一次性训练多元时间序列数据的方法。让我们看看仅使用一个SQL命令是如何完成的:

​基于智能数据库的自助式机器学习

创建的stock_forecaster预测器可以预测某个特定商店未来将销售多少商品。数据按销售日期排序,并按商店分组。所以我们可以为每个商店预测销售金额。

(2)批量预测

通过使用下面的查询将销售数据表与预测器连接起来,JOIN操作将预测的数量添加到记录中,因此我们可以一次性获得许多记录的批量预测。

​基于智能数据库的自助式机器学习

如想了解更多关于在BI工具中分析和可视化预测的知识,请查看这篇文章。

(3)实际运用

传统方法将ML模型视为独立的应用程序,需要维护到数据库的ETL管道和到业务应用程序的API集成。AutoML工具尽管使建模部分变得轻松而直接,但完整的ML工作流也仍然需要经验丰富的专家管理。其实数据库已经是数据准备的优选工具,因此将ML引入到数据库而非将数据引入ML中是更有意义的。由于AutoML工具驻留在数据库中,来自MindsDB的AI Tables构造能够为数据从业者提供自助AutoML并让机器学习工作流得以简化。

原文链接:https://dzone.com/articles/self-service-machine-learning-with-intelligent-dat

译者介绍

张怡,51CTO社区编辑,中级工程师。主要研究人工智能算法实现以及场景应用,对机器学习算法和自动控制算法有所了解和掌握,并将持续关注国内外人工智能技术的发展动态,特别是人工智能技术在智能网联汽车、智能家居等领域的具体实现及其应用。

​基于智能数据库的自助式机器学习

以上是​基于智能数据库的自助式机器学习的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文转载于:51CTO.COM。如有侵权,请联系admin@php.cn删除
AI技能差距正在减慢供应链AI技能差距正在减慢供应链Apr 26, 2025 am 11:13 AM

经常使用“ AI-Ready劳动力”一词,但是在供应链行业中确实意味着什么? 供应链管理协会(ASCM)首席执行官安倍·埃什肯纳齐(Abe Eshkenazi)表示,它表示能够评论家的专业人员

一家公司如何悄悄地努力改变AI一家公司如何悄悄地努力改变AIApr 26, 2025 am 11:12 AM

分散的AI革命正在悄悄地获得动力。 本周五在德克萨斯州奥斯汀,Bittensor最终游戏峰会标志着一个关键的时刻,将分散的AI(DEAI)从理论转变为实际应用。 与闪闪发光的广告不同

NVIDIA释放NEMO微服务以简化AI代理开发NVIDIA释放NEMO微服务以简化AI代理开发Apr 26, 2025 am 11:11 AM

企业AI面临数据集成挑战 企业AI的应用面临一项重大挑战:构建能够通过持续学习业务数据来保持准确性和实用性的系统。NeMo微服务通过创建Nvidia所描述的“数据飞轮”来解决这个问题,允许AI系统通过持续接触企业信息和用户互动来保持相关性。 这个新推出的工具包包含五个关键微服务: NeMo Customizer 处理大型语言模型的微调,具有更高的训练吞吐量。 NeMo Evaluator 提供针对自定义基准的AI模型简化评估。 NeMo Guardrails 实施安全控制,以保持合规性和适当的

AI为艺术与设计的未来描绘了一幅新图片AI为艺术与设计的未来描绘了一幅新图片Apr 26, 2025 am 11:10 AM

AI:艺术与设计的未来画卷 人工智能(AI)正以前所未有的方式改变艺术与设计领域,其影响已不仅限于业余爱好者,更深刻地波及专业人士。AI生成的艺术作品和设计方案正在迅速取代传统的素材图片和许多交易性设计活动中的设计师,例如广告、社交媒体图片生成和网页设计。 然而,专业艺术家和设计师也发现AI的实用价值。他们将AI作为辅助工具,探索新的美学可能性,融合不同的风格,创造新颖的视觉效果。AI帮助艺术家和设计师自动化重复性任务,提出不同的设计元素并提供创意输入。 AI支持风格迁移,即将一种图像的风格应用

Zoom如何彻底改变与Agent AI的合作:从会议到里程碑Zoom如何彻底改变与Agent AI的合作:从会议到里程碑Apr 26, 2025 am 11:09 AM

Zoom最初以其视频会议平台而闻名,它通过创新使用Agentic AI来引领工作场所革命。 最近与Zoom的CTO XD黄的对话揭示了该公司雄心勃勃的愿景。 定义代理AI 黄d

对大学的存在威胁对大学的存在威胁Apr 26, 2025 am 11:08 AM

AI会彻底改变教育吗? 这个问题是促使教育者和利益相关者的认真反思。 AI融入教育既提出了机遇和挑战。 正如科技Edvocate的马修·林奇(Matthew Lynch)所指出的那样

原型:美国科学家正在国外寻找工作原型:美国科学家正在国外寻找工作Apr 26, 2025 am 11:07 AM

美国科学研究和技术发展或将面临挑战,这或许是由于预算削减导致的。据《自然》杂志报道,2025年1月至3月期间,美国科学家申请海外工作的数量比2024年同期增加了32%。此前一项民意调查显示,75%的受访研究人员正在考虑前往欧洲和加拿大寻找工作。 过去几个月,数百项NIH和NSF的拨款被终止,NIH今年的新拨款减少了约23亿美元,下降幅度接近三分之一。泄露的预算提案显示,特朗普政府正在考虑大幅削减科学机构的预算,削减幅度可能高达50%。 基础研究领域的动荡也影响了美国的一大优势:吸引海外人才。35

所有有关打开AI最新的GPT 4.1家庭的信息 - 分析Vidhya所有有关打开AI最新的GPT 4.1家庭的信息 - 分析VidhyaApr 26, 2025 am 10:19 AM

Openai推出了强大的GPT-4.1系列:一个专为现实世界应用设计的三种高级语言模型家族。 这种巨大的飞跃提供了更快的响应时间,增强的理解和大幅降低了成本

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

SublimeText3 Linux新版

SublimeText3 Linux新版

SublimeText3 Linux最新版

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

将Eclipse与SAP NetWeaver应用服务器集成。

VSCode Windows 64位 下载

VSCode Windows 64位 下载

微软推出的免费、功能强大的一款IDE编辑器

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

功能强大的PHP集成开发环境

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用