译者 | 张怡
审校 | 梁策 孙淑娟
1.如何成为一个IDO?
IDO(insight-driven organization)指洞察力驱动(以信息为导向)的组织。要成为一个IDO,首先需要数据以及操作和分析数据的工具;其次是具有适当经验的数据分析师或数据科学家;最后还需要找到一种技术或者方法,从而在整个公司实施洞察力驱动的决策过程。
机器学习是能最大限度发挥数据优势的技术。ML流程首先使用数据训练预测模型,训练成功之后来解决与数据相关的问题。其中,人工神经网络是最有效的技术,它的设计源自我们目前对人类大脑工作方式的理解。考虑到人们目前拥有的巨大计算资源,它通过大量数据训练可以产生令人难以置信的模型。
企业可以使用各种自助化软件和脚本完成不同的任务,从而避免人为错误的情况。同样,你也完全可以基于数据进行决策来避免当中的人为错误。
2.为什么企业在采用人工智能方面进展缓慢?
使用人工智能或机器学习来处理数据的企业仅是少数。美国人口普查局(US Census Bureau)表示,截至2020年,只有不到10%的美国企业采用了机器学习(主要是大公司)。
采用ML的障碍包括:
- 人工智能在取代人类之前还有大量工作尚未完成。首先是许多企业缺乏且请不起专业人员。数据科学家在这一领域备受推崇,但他们的雇佣成本也是最高的。
- 缺乏可用数据、数据安全性以及耗时的ML算法实现。
- 企业很难创造一个环境,从而让数据及其优势得到发挥。这种环境需要相关的工具、过程和策略。
3.机器学习的推广只有自动ML(AutoML)工具是不够的
自动ML平台虽然有着很光明的未来,但其覆盖面目前还相当有限,同时关于自动ML能否很快取代数据科学家的说法也有争论。
如果想要在公司成功部署自助化机器学习,AutoML工具确实是至关重要的,但过程、方法和策略也必须重视。AutoML平台只是工具,大多数ML专家认为这是不够的。
4.分解机器学习过程
任何ML进程都从数据开始。人们普遍认为,数据准备是ML过程中最重要的环节,建模部分只是整个数据管道的一部分,同时通过AutoML工具得到简化。完整的工作流仍需要大量的工作来转换数据并将其提供给模型。数据准备和数据转换可谓工作中最耗时、最令人不愉快的部分。
此外,用于训练ML模型的业务数据也会定期更新。因此,它要求企业构建能够掌握复杂的工具和流程的复杂ETL管道,因此确保ML流程的连续和实时性也是一项具有挑战性的任务。
5.将ML与应用程序集成
假设现在我们已经构建了ML模型,然后需要将其部署。经典的部署方法将其视为应用层组件,如下图所示:
它的输入是数据,输出是我们得到的预测。通过集成这些应用程序的API来使用ML模型的输出。仅从开发者的角度来看,这一切似乎很容易,但在考虑流程时就不是那么回事了。在一个庞大的组织中,与业务应用程序的任何集成和维护都相当麻烦。即使公司精通技术,任何代码更改请求都必须通过多级部门的特定审查和测试流程。这会对灵活性产生负面影响,并增加整个工作流的复杂性。
如果在测试各种概念和想法方面有足够的灵活性,那么基于ML的决策就会容易得多,因此人们会更喜欢具有自助服务功能的产品。
6.自助机器学习/智能数据库?
正如我们上面看到的,数据是ML进程的核心,现有的ML工具获取数据并返回预测结果,而这些预测也是数据的形式。
现在问题来了:
- 为什么我们要把ML作为一个独立的应用程序,并在ML模型、应用程序和数据库之间实现复杂的集成呢?
- 为什么不让ML成为数据库的核心功能呢?
- 为什么不让ML模型通过标准的数据库语法(如SQL)可用呢?
让我们分析上述问题及其面临的挑战,从而找到ML解决方案。
挑战#1:复杂的数据集成和ETL管道
维护ML模型和数据库之间的复杂数据集成和ETL管道,是ML流程面临的最大挑战之一。
SQL是极佳的数据操作工具,所以我们可以通过将ML模型引入数据层来解决这个问题。换句话说,ML模型将在数据库中学习并返回预测。
挑战#2:ML模型与应用程序的集成
通过API将ML模型与业务应用程序集成是面临的另一个挑战。
业务应用程序和BI工具与数据库紧密耦合。因此,如果AutoML工具成为数据库的一部分,我们就可以使用标准SQL语法进行预测。接下来,ML模型和业务应用程序之间不再需要API集成,因为模型驻留在数据库中。
解决方案:在数据库中嵌入AutoML
在数据库中嵌入AutoML工具会带来很多好处,比如:
- 任何使用数据并了解SQL的人(数据分析师或数据科学家)都可以利用机器学习的力量。
- 软件开发人员可以更有效地将ML嵌入到业务工具和应用程序中。
- 数据和模型之间以及模型和业务应用程序之间不需要复杂的集成。
这样一来,上述相对复杂的集成图表变更如下:
它看起来更简单,也使ML过程更流畅高效。
7.如何实现自助式ML将模型作为虚拟数据库表
找到解决方案的下一步是来实施它。
为此,我们使用了一个叫做AI Tables的结构。它以虚拟表的形式将机器学习引入数据平台。它可以像其他数据库表一样创建,然后向应用程序、BI工具和DB客户端开放。我们通过简单地查询数据来进行预测。
AI Tables最初由MindsDB开发,可以作为开源或托管云服务使用。他们集成了传统的SQL和NoSQL数据库,如Kafka和Redis。
8.使用AI Tables
AI Tables的概念使我们能够在数据库中执行ML过程,这样ML过程的所有步骤(即数据准备、模型训练和预测)都可以通过数据库进行。
- 训练AI Tables
首先,用户要根据自己的需求创建一个AI Table,它类似于一个机器学习模型,包含了与源表的列等价的特征;然后通过AutoML引擎自助完成剩余的建模任务。后文还将举例说明。
- 做预测
一旦创建了AI Table,它不需要任何进一步的部署就可以使用了。要进行预测,只需要在AI Table上运行一个标准SQL查询。
你可以逐个或分批地进行预测。AI Tables可以处理许多复杂的机器学习任务,如多元时间序列、检测异常等。
9.AI Tables工作示例
对于零售商来说,在适当的时间保证产品都有适当的库存是一项复杂的任务。当需求增长时,供给随之增加。基于这些数据和机器学习,我们可以预测给定的产品在给定的日期应该有多少库存,从而为零售商带来更多收益。
首先你需要跟踪以下信息,建立一张AI Table:
- 产品售出日期(date_of_sale)
- 产品售出店铺(shop)
- 具体售出产品(product_code)
- 产品售出数量(amount)
如下图所示:
(1)训练AI Tables
要创建和训练AI Tables,你首先要允许MindsDB访问数据。详细说明可参考MindsDB文档( MindsDB documentation)。
AI Tables就像ML模型,需要使用历史数据来训练它们。
下面使用一个简单的SQL命令,训练一个AITable:
让我们分析这个查询:
- 使用MindsDB中的CREATE PREDICTOR语句。
- 根据历史数据定义源数据库。
- 根据历史数据表(historical_table)训练AI Table,所选列(column_1和column_2)是用来进行预测的特征。
- AutoML自动完成剩下的建模任务。
- MindsDB会识别每一列的数据类型,对其进行归一化和编码,并构建和训练ML模型。
同时,你可以看到每个预测的总体准确率和置信度,并估计哪些列(特征)对结果更重要。
在数据库中,我们经常需要处理涉及高基数的多元时间序列数据的任务。如果使用传统的方法,需要相当大的力气来创建这样的ML模型。我们需要对数据进行分组,并根据给定的时间、日期或时间戳数据字段对其进行排序。
例如,我们预测五金店卖出的锤子数量。那么,数据按商店和产品分组,并对每个不同的商店和产品组合作出预测。这就给我们带来了为每个组创建时间序列模型的问题。
这听起来工程浩大,但MindsDB提供了使用GROUP BY语句创建单个ML模型,从而一次性训练多元时间序列数据的方法。让我们看看仅使用一个SQL命令是如何完成的:
创建的stock_forecaster预测器可以预测某个特定商店未来将销售多少商品。数据按销售日期排序,并按商店分组。所以我们可以为每个商店预测销售金额。
(2)批量预测
通过使用下面的查询将销售数据表与预测器连接起来,JOIN操作将预测的数量添加到记录中,因此我们可以一次性获得许多记录的批量预测。
如想了解更多关于在BI工具中分析和可视化预测的知识,请查看这篇文章。
(3)实际运用
传统方法将ML模型视为独立的应用程序,需要维护到数据库的ETL管道和到业务应用程序的API集成。AutoML工具尽管使建模部分变得轻松而直接,但完整的ML工作流也仍然需要经验丰富的专家管理。其实数据库已经是数据准备的优选工具,因此将ML引入到数据库而非将数据引入ML中是更有意义的。由于AutoML工具驻留在数据库中,来自MindsDB的AI Tables构造能够为数据从业者提供自助AutoML并让机器学习工作流得以简化。
原文链接:https://dzone.com/articles/self-service-machine-learning-with-intelligent-dat
译者介绍
张怡,51CTO社区编辑,中级工程师。主要研究人工智能算法实现以及场景应用,对机器学习算法和自动控制算法有所了解和掌握,并将持续关注国内外人工智能技术的发展动态,特别是人工智能技术在智能网联汽车、智能家居等领域的具体实现及其应用。
以上是基于智能数据库的自助式机器学习的详细内容。更多信息请关注PHP中文网其他相关文章!

译者 | 布加迪审校 | 孙淑娟目前,没有用于构建和管理机器学习(ML)应用程序的标准实践。机器学习项目组织得不好,缺乏可重复性,而且从长远来看容易彻底失败。因此,我们需要一套流程来帮助自己在整个机器学习生命周期中保持质量、可持续性、稳健性和成本管理。图1. 机器学习开发生命周期流程使用质量保证方法开发机器学习应用程序的跨行业标准流程(CRISP-ML(Q))是CRISP-DM的升级版,以确保机器学习产品的质量。CRISP-ML(Q)有六个单独的阶段:1. 业务和数据理解2. 数据准备3. 模型

机器学习是一个不断发展的学科,一直在创造新的想法和技术。本文罗列了2023年机器学习的十大概念和技术。 本文罗列了2023年机器学习的十大概念和技术。2023年机器学习的十大概念和技术是一个教计算机从数据中学习的过程,无需明确的编程。机器学习是一个不断发展的学科,一直在创造新的想法和技术。为了保持领先,数据科学家应该关注其中一些网站,以跟上最新的发展。这将有助于了解机器学习中的技术如何在实践中使用,并为自己的业务或工作领域中的可能应用提供想法。2023年机器学习的十大概念和技术:1. 深度神经网

译者 | 朱先忠审校 | 孙淑娟在我之前的博客中,我们已经了解了如何使用因果树来评估政策的异质处理效应。如果你还没有阅读过,我建议你在阅读本文前先读一遍,因为我们在本文中认为你已经了解了此文中的部分与本文相关的内容。为什么是异质处理效应(HTE:heterogenous treatment effects)呢?首先,对异质处理效应的估计允许我们根据它们的预期结果(疾病、公司收入、客户满意度等)选择提供处理(药物、广告、产品等)的用户(患者、用户、客户等)。换句话说,估计HTE有助于我

近年来,基于深度学习的模型在目标检测和图像识别等任务中表现出色。像ImageNet这样具有挑战性的图像分类数据集,包含1000种不同的对象分类,现在一些模型已经超过了人类水平上。但是这些模型依赖于监督训练流程,标记训练数据的可用性对它们有重大影响,并且模型能够检测到的类别也仅限于它们接受训练的类。由于在训练过程中没有足够的标记图像用于所有类,这些模型在现实环境中可能不太有用。并且我们希望的模型能够识别它在训练期间没有见到过的类,因为几乎不可能在所有潜在对象的图像上进行训练。我们将从几个样本中学习

本文讨论使用LazyPredict来创建简单的ML模型。LazyPredict创建机器学习模型的特点是不需要大量的代码,同时在不修改参数的情况下进行多模型拟合,从而在众多模型中选出性能最佳的一个。 摘要本文讨论使用LazyPredict来创建简单的ML模型。LazyPredict创建机器学习模型的特点是不需要大量的代码,同时在不修改参数的情况下进行多模型拟合,从而在众多模型中选出性能最佳的一个。本文包括的内容如下:简介LazyPredict模块的安装在分类模型中实施LazyPredict

译者 | 朱先忠审校 | 孙淑娟引言模型超参数(或模型设置)的优化可能是训练机器学习算法中最重要的一步,因为它可以找到最小化模型损失函数的最佳参数。这一步对于构建不易过拟合的泛化模型也是必不可少的。优化模型超参数的最著名技术是穷举网格搜索和随机网格搜索。在第一种方法中,搜索空间被定义为跨越每个模型超参数的域的网格。通过在网格的每个点上训练模型来获得最优超参数。尽管网格搜索非常容易实现,但它在计算上变得昂贵,尤其是当要优化的变量数量很大时。另一方面,随机网格搜索是一种更快的优化方法,可以提供更好的

实现自我完善的过程是“机器学习”。机器学习是人工智能核心,是使计算机具有智能的根本途径;它使计算机能模拟人的学习行为,自动地通过学习来获取知识和技能,不断改善性能,实现自我完善。机器学习主要研究三方面问题:1、学习机理,人类获取知识、技能和抽象概念的天赋能力;2、学习方法,对生物学习机理进行简化的基础上,用计算的方法进行再现;3、学习系统,能够在一定程度上实现机器学习的系统。

本文将详细介绍用来提高机器学习效果的最常见的超参数优化方法。 译者 | 朱先忠审校 | 孙淑娟简介通常,在尝试改进机器学习模型时,人们首先想到的解决方案是添加更多的训练数据。额外的数据通常是有帮助(在某些情况下除外)的,但生成高质量的数据可能非常昂贵。通过使用现有数据获得最佳模型性能,超参数优化可以节省我们的时间和资源。顾名思义,超参数优化是为机器学习模型确定最佳超参数组合以满足优化函数(即,给定研究中的数据集,最大化模型的性能)的过程。换句话说,每个模型都会提供多个有关选项的调整“按钮


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

Dreamweaver CS6
视觉化网页开发工具

螳螂BT
Mantis是一个易于部署的基于Web的缺陷跟踪工具,用于帮助产品缺陷跟踪。它需要PHP、MySQL和一个Web服务器。请查看我们的演示和托管服务。

ZendStudio 13.5.1 Mac
功能强大的PHP集成开发环境

记事本++7.3.1
好用且免费的代码编辑器

DVWA
Damn Vulnerable Web App (DVWA) 是一个PHP/MySQL的Web应用程序,非常容易受到攻击。它的主要目标是成为安全专业人员在合法环境中测试自己的技能和工具的辅助工具,帮助Web开发人员更好地理解保护Web应用程序的过程,并帮助教师/学生在课堂环境中教授/学习Web应用程序安全。DVWA的目标是通过简单直接的界面练习一些最常见的Web漏洞,难度各不相同。请注意,该软件中