在本教程中,我们将探索Python和PySpark的强大组合,用于处理大型数据集。PySpark是一个Python库,提供了与Apache Spark的接口,它是一个快速且通用的集群计算系统。通过利用PySpark,我们可以高效地在一组机器上分发和处理数据,使我们能够轻松处理大规模数据集。
在本文中,我们将深入探讨PySpark的基本原理,并演示如何在大型数据集上执行各种数据处理任务。我们将涵盖关键概念,如RDD(弹性分布式数据集)和数据框架,并通过逐步示例展示它们的实际应用。通过本教程的学习,您将对如何有效地利用PySpark处理和分析大规模数据集有一个扎实的理解。
Section 1: Getting Started with PySpark
的中文翻译为:第一部分:开始使用PySpark
在本节中,我们将设置开发环境并熟悉PySpark的基本概念。我们将介绍如何安装PySpark,初始化SparkSession,并将数据加载到RDD和DataFrame中。让我们开始安装PySpark:
# Install PySpark !pip install pyspark
输出
Collecting pyspark ... Successfully installed pyspark-3.1.2
安装PySpark之后,我们可以初始化一个SparkSession来连接到我们的Spark集群:
from pyspark.sql import SparkSession # Create a SparkSession spark = SparkSession.builder.appName("LargeDatasetProcessing").getOrCreate()
有了我们准备好的SparkSession,我们现在可以将数据加载到RDDs或DataFrames中。RDDs是PySpark中的基本数据结构,它提供了一个分布式的元素集合。而DataFrames则将数据组织成命名列,类似于关系数据库中的表格。让我们将一个CSV文件加载为一个DataFrame:
# Load a CSV file as a DataFrame df = spark.read.csv("large_dataset.csv", header=True, inferSchema=True)
输出
+---+------+--------+ |id |name |age | +---+------+--------+ |1 |John |32 | |2 |Alice |28 | |3 |Bob |35 | +---+------+--------+
从上面的代码片段中可以看出,我们使用`read.csv()`方法将CSV文件读入数据框中。`header=True`参数表示第一行包含列名,而`inferSchema=True`会自动推断每一列的数据类型。
第 2 部分:转换和分析数据
在本节中,我们将探索使用 PySpark 的各种数据转换和分析技术。我们将介绍过滤、聚合和连接数据集等操作。让我们首先根据特定条件过滤数据:
# Filter data filtered_data = df.filter(df["age"] > 30)
输出
+---+----+---+ |id |name|age| +---+----+---+ |1 |John|32 | |3 |Bob |35 | +---+----+---+
在上面的代码片段中,我们使用`filter()`方法来选择“age”列大于30的行。这个操作允许我们从大型数据集中提取相关的子集。
接下来,让我们使用“groupBy()”和“agg()”方法对数据集执行聚合:
# Aggregate data aggregated_data = df.groupBy("gender").agg({"salary": "mean", "age": "max"})
输出
+------+-----------+--------+ |gender|avg(salary)|max(age)| +------+-----------+--------+ |Male |2500 |32 | |Female|3000 |35 | +------+-----------+--------+
在这里,我们按“性别”列对数据进行分组,并计算每组的平均工资和最大年龄。生成的“aggreated_data”数据框架为我们提供了对数据集的宝贵见解。
除了过滤和聚合之外,PySpark 还使我们能够高效地连接多个数据集。让我们考虑一个示例,其中我们有两个 DataFrame:“df1”和“df2”。我们可以根据一个共同的列加入它们:
# Join two DataFrames joined_data = df1.join(df2, on="id", how="inner")
输出
+---+----+---------+------+ |id |name|department|salary| +---+----+---------+------+ |1 |John|HR |2500 | |2 |Alice|IT |3000 | |3 |Bob |Sales |2000 | +---+----+---------+------+
`join()`方法允许我们根据`on`参数指定的公共列来合并DataFrame。根据我们的需求,我们可以选择不同的连接类型,例如"inner"、"outer"、"left"或"right"。
第三部分:高级PySpark技术
在本节中,我们将探讨高级的PySpark技术,以进一步增强我们的数据处理能力。我们将涵盖用户定义函数(UDFs)、窗口函数和缓存等主题。让我们从定义和使用UDF开始:
from pyspark.sql.functions import udf # Define a UDF def square(x): return x ** 2 # Register the UDF square_udf = udf(square) # Apply the UDF to a column df = df.withColumn("age_squared", square_udf(df["age"]))
输出
+---+------+---+------------+ |id |name |age|age_squared | +---+------+---+------------+ |1 |John |32 |1024 | |2 |Alice |28 |784 | |3 |Bob |35 |1225 | +---+------+---+------------+
在上面的代码片段中,我们定义了一个简单的UDF函数,名为`square()`,它用于对给定的输入进行平方运算。然后,我们使用`udf()`函数注册该UDF,并将其应用于"age"列,从而在我们的DataFrame中创建一个名为"age_squared"的新列。
PySpark还提供了强大的窗口函数,允许我们在特定的窗口范围内执行计算。让我们考虑上一行和下一行来计算每个员工的平均工资:
from pyspark.sql.window import Window from pyspark.sql.functions import lag, lead, avg # Define the window window = Window.orderBy("id") # Calculate average salary with lag and lead df = df.withColumn("avg_salary", (lag(df["salary"]).over(window) + lead(df["salary"]).over(window) + df["salary"]) / 3)
输出
+---+----+---------+------+----------+ |id |name|department|salary|avg_salary| +---+----+---------+------+----------+ |1 |John|HR |2500 |2666.6667 | |2 |Alice| IT |3000 |2833.3333 | |3 |Bob |Sales |2000 |2500 | +---+----+---------+------+----------+
在上面的代码摘录中,我们使用“Window.orderBy()”方法定义一个窗口,根据“id”列指定行的排序。然后,我们使用“lag()”和“lead()”函数分别访问前一行和下一行。最后,我们通过考虑当前行及其邻居来计算平均工资。
最后,缓存是 PySpark 中提高迭代算法或重复计算性能的一项重要技术。我们可以使用 `cache()` 方法在内存中缓存 DataFrame 或 RDD:
# Cache a DataFrame df.cache()
缓存不会显示任何输出,但依赖缓存的 DataFrame 的后续操作会更快,因为数据存储在内存中。
结论
在本教程中,我们探索了 PySpark 在 Python 中处理大型数据集的强大功能。我们首先设置开发环境并将数据加载到 RDD 和 DataFrame 中。然后,我们深入研究了数据转换和分析技术,包括过滤、聚合和连接数据集。最后,我们讨论了高级 PySpark 技术,例如用户定义函数、窗口函数和缓存。
以上是使用Python PySpark处理大型数据集的详细内容。更多信息请关注PHP中文网其他相关文章!

Linux终端中查看Python版本时遇到权限问题的解决方法当你在Linux终端中尝试查看Python的版本时,输入python...

本文解释了如何使用美丽的汤库来解析html。 它详细介绍了常见方法,例如find(),find_all(),select()和get_text(),以用于数据提取,处理不同的HTML结构和错误以及替代方案(SEL)

Python 对象的序列化和反序列化是任何非平凡程序的关键方面。如果您将某些内容保存到 Python 文件中,如果您读取配置文件,或者如果您响应 HTTP 请求,您都会进行对象序列化和反序列化。 从某种意义上说,序列化和反序列化是世界上最无聊的事情。谁会在乎所有这些格式和协议?您想持久化或流式传输一些 Python 对象,并在以后完整地取回它们。 这是一种在概念层面上看待世界的好方法。但是,在实际层面上,您选择的序列化方案、格式或协议可能会决定程序运行的速度、安全性、维护状态的自由度以及与其他系

本文比较了Tensorflow和Pytorch的深度学习。 它详细介绍了所涉及的步骤:数据准备,模型构建,培训,评估和部署。 框架之间的关键差异,特别是关于计算刻度的

Python的statistics模块提供强大的数据统计分析功能,帮助我们快速理解数据整体特征,例如生物统计学和商业分析等领域。无需逐个查看数据点,只需查看均值或方差等统计量,即可发现原始数据中可能被忽略的趋势和特征,并更轻松、有效地比较大型数据集。 本教程将介绍如何计算平均值和衡量数据集的离散程度。除非另有说明,本模块中的所有函数都支持使用mean()函数计算平均值,而非简单的求和平均。 也可使用浮点数。 import random import statistics from fracti

该教程建立在先前对美丽汤的介绍基础上,重点是简单的树导航之外的DOM操纵。 我们将探索有效的搜索方法和技术,以修改HTML结构。 一种常见的DOM搜索方法是EX

本文指导Python开发人员构建命令行界面(CLIS)。 它使用Typer,Click和ArgParse等库详细介绍,强调输入/输出处理,并促进用户友好的设计模式,以提高CLI可用性。

本文讨论了诸如Numpy,Pandas,Matplotlib,Scikit-Learn,Tensorflow,Tensorflow,Django,Blask和请求等流行的Python库,并详细介绍了它们在科学计算,数据分析,可视化,机器学习,网络开发和H中的用途


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

螳螂BT
Mantis是一个易于部署的基于Web的缺陷跟踪工具,用于帮助产品缺陷跟踪。它需要PHP、MySQL和一个Web服务器。请查看我们的演示和托管服务。

MinGW - 适用于 Windows 的极简 GNU
这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

SublimeText3 英文版
推荐:为Win版本,支持代码提示!

禅工作室 13.0.1
功能强大的PHP集成开发环境