本期给大家带来Python字典11个方法的全面解析,希望对你有所帮助。
dic = {key1 : value1, key2 : value2 }
字典也被称作关联数组或哈希表,下面是几种常见的字典创建方式:
# 方法1 dic1 = { 'Author' : 'Python当打之年' , 'age' : 99 , 'sex' : '男' } # 方法2 lst = [('Author', 'Python当打之年'), ('age', 99), ('sex', '男')] dic2 = dict(lst) # 方法3 dic3 = dict( Author = 'Python当打之年', age = 99, sex = '男') # 方法4 list1 = ['Author', 'age', 'sex'] list2 = ['Python当打之年', 99, '男'] dic4 = dict(zip(list1, list2))
print('methods = ',methods) methods = ['__class__', '__contains__', '__delattr__', '__delitem__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__getitem__', '__gt__', '__hash__', '__init__', '__init_subclass__', '__iter__', '__le__', '__len__', '__lt__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__reversed__', '__setattr__', '__setitem__', '__sizeof__', '__str__', '__subclasshook__', 'clear', 'copy', 'fromkeys', 'get', 'items', 'keys', 'pop', 'popitem', 'setdefault', 'update', 'values']
['clear', 'copy', 'fromkeys', 'get', 'items', 'keys', 'pop', 'popitem', 'setdefault', 'update', 'values']
list1 = ['Author', 'age', 'sex'] list2 = ['Python当打之年', 99, '男'] dic1 = dict(zip(list1, list2)) # dic1 = {'Author': 'Python当打之年', 'age': 99, 'sex': '男'} dic1.clear() # dic1 = {}
list1 = ['Author', 'age', 'sex'] list2 = ['Python当打之年', 99, '男'] dic1 = dict(zip(list1, list2)) dic2 = dic1 # 浅拷贝: 引用对象 dic3 = dic1.copy() # 浅拷贝:深拷贝父对象(一级目录),子对象(二级目录)不拷贝,还是引用 dic1['age'] = 18 # dic1 = {'Author': 'Python当打之年', 'age': 18, 'sex': '男'} # dic2 = {'Author': 'Python当打之年', 'age': 18, 'sex': '男'} # dic3 = {'Author': 'Python当打之年', 'age': 99, 'sex': '男'}
import copy list1 = ['Author', 'age', 'sex'] list2 = ['Python当打之年', [18,99], '男'] dic1 = dict(zip(list1, list2)) dic2 = dic1 dic3 = dic1.copy() dic4 = copy.deepcopy(dic1) dic1['age'].remove(18) dic1['age'] = 20 # dic1 = {'Author': 'Python当打之年', 'age': 20, 'sex': '男'} # dic2 = {'Author': 'Python当打之年', 'age': 20, 'sex': '男'} # dic3 = {'Author': 'Python当打之年', 'age': [99], 'sex': '男'} # dic4 = {'Author': 'Python当打之年', 'age': [18, 99], 'sex': '男'}
list1 = ['Author', 'age', 'sex'] dic1 = dict.fromkeys(list1) dic2 = dict.fromkeys(list1, 'Python当打之年') # dic1 = {'Author': None, 'age': None, 'sex': None} # dic2 = {'Author': 'Python当打之年', 'age': 'Python当打之年', 'sex': 'Python当打之年'}
list1 = ['Author', 'age', 'sex'] list2 = ['Python当打之年', [18,99], '男'] dic1 = dict(zip(list1, list2)) Author = dic1.get('Author') # Author = Python当打之年 phone = dic1.get('phone') # phone = None phone = dic1.get('phone','12345678') # phone = 12345678
list1 = ['Author', 'age', 'sex'] list2 = ['Python当打之年', [18,99], '男'] dic1 = dict(zip(list1, list2)) items = dic1.items() print('items = ', items) print(type(items)) print('items = ', list(items)) # items = dict_items([('Author', 'Python当打之年'), ('age', [18, 99]), ('sex', '男')]) # <class 'dict_items'> # items = [('Author', 'Python当打之年'), ('age', [18, 99]), ('sex', '男')]
list1 = ['Author', 'age', 'sex'] list2 = ['Python当打之年', [18,99], '男'] dic1 = dict(zip(list1, list2)) keys = dic1.keys() print('keys = ', keys) print(type(keys)) print('keys = ', list(keys)) # keys = dict_keys(['Author', 'age', 'sex']) # <class 'dict_keys'> # keys = ['Author', 'age', 'sex']
list1 = ['Author', 'age', 'sex'] list2 = ['Python当打之年', [18,99], '男'] dic1 = dict(zip(list1, list2)) sex = dic1.pop('sex') print('sex = ', sex) print('dic1 = ',dic1) # sex = 男 # dic1 = {'Author': 'Python当打之年', 'age': [18, 99]}
list1 = ['Author', 'age', 'sex'] list2 = ['Python当打之年', [18,99], '男'] dic1 = dict(zip(list1, list2)) dic1.popitem() print('dic1 = ',dic1) # dic1 = {'Author': 'Python当打之年', 'age': [18, 99]}
list1 = ['Author', 'age', 'sex'] list2 = ['Python当打之年', [18,99], '男'] dic1 = dict(zip(list1, list2)) dic1.setdefault('Author', '当打之年') print('dic1 = ',dic1) # dic1 = {'Author': 'Python当打之年', 'age': [18, 99], 'sex': '男'} dic1.setdefault('name', '当打之年') print('dic1 = ',dic1) # dic1 = {'Author': 'Python当打之年', 'age': [18, 99], 'sex': '男', 'name': '当打之年'}
list1 = ['Author', 'age', 'sex'] list2 = ['Python当打之年', [18,99], '男'] dic1 = dict(zip(list1, list2)) print('dic1 = ',dic1) # dic1 = {'Author': 'Python当打之年', 'age': [18, 99], 'sex': '男'} list3 = ['Author', 'phone' ] list4 = ['当打之年', 12345678] dic2 = dict(zip(list3, list4)) print('dic2 = ',dic2) # dic2 = {'Author': '当打之年', 'phone': 12345678} dic1.update(dic2) print('dic1 = ',dic1) # dic1 = {'Author': '当打之年', 'age': [18, 99], 'sex': '男', 'phone': 12345678}
list1 = ['Author', 'age', 'sex'] list2 = ['Python当打之年', [18,99], '男'] dic1 = dict(zip(list1, list2)) values = dic1.values() print('values = ', values) print(type(values)) print('values = ', list(values)) # values = dict_values(['Python当打之年', [18, 99], '男']) # <class 'dict_values'> # values = ['Python当打之年', [18, 99], '男']
以上是基础 | 11个Python字典用法详解的详细内容。更多信息请关注PHP中文网其他相关文章!

Python脚本在Unix系统上无法运行的原因包括:1)权限不足,使用chmod xyour_script.py赋予执行权限;2)Shebang行错误或缺失,应使用#!/usr/bin/envpython;3)环境变量设置不当,可打印os.environ调试;4)使用错误的Python版本,可在Shebang行或命令行指定版本;5)依赖问题,使用虚拟环境隔离依赖;6)语法错误,使用python-mpy_compileyour_script.py检测。

使用Python数组比列表更适合处理大量数值数据。1)数组更节省内存,2)数组对数值运算更快,3)数组强制类型一致性,4)数组与C语言数组兼容,但在灵活性和便捷性上不如列表。

列表列表更好的forflexibility andmixDatatatypes,何时出色的Sumerical Computitation sand larged数据集。1)不可使用的列表xbilese xibility xibility xibility xibility xibility xibility xibility xibility xibility xibility xibles and comply offrequent elementChanges.2)

numpymanagesmemoryforlargearraysefefticefticefipedlyuseviews,副本和内存模拟文件.1)viewsAllowSinglicingWithOutCopying,直接modifytheoriginalArray.2)copiesCanbecopy canbecreatedwitheDedwithTheceDwithThecevithThece()methodervingdata.3)metservingdata.3)memore memore-mappingfileShessandAstaStaStstbassbassbassbassbassbassbassbassbassbassbb

Listsinpythondonotrequireimportingamodule,helilearraysfomthearraymoduledoneedanimport.1)列表列表,列表,多功能和canholdMixedDatatatepes.2)arraysaremoremoremoremoremoremoremoremoremoremoremoremoremoremoremoremoremeremeremeremericdatabuteffeftlessdatabutlessdatabutlessfiblesible suriplyElsilesteletselementEltecteSemeTemeSemeSemeSemeTypysemeTypysemeTysemeTypysemeTypepe。

pythonlistscanStoryDatatepe,ArrayModulearRaysStoreOneType,and numpyArraySareSareAraysareSareAraysareSareComputations.1)列出sareversArversAtileButlessMemory-Felide.2)arraymoduleareareMogeMogeNareSaremogeNormogeNoreSoustAta.3)

WhenyouattempttostoreavalueofthewrongdatatypeinaPythonarray,you'llencounteraTypeError.Thisisduetothearraymodule'sstricttypeenforcement,whichrequiresallelementstobeofthesametypeasspecifiedbythetypecode.Forperformancereasons,arraysaremoreefficientthanl

pythonlistsarepartofthestAndArdLibrary,herilearRaysarenot.listsarebuilt-In,多功能,和Rused ForStoringCollections,而EasaraySaraySaraySaraysaraySaraySaraysaraySaraysarrayModuleandleandleandlesscommonlyusedDduetolimitedFunctionalityFunctionalityFunctionality。


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

ZendStudio 13.5.1 Mac
功能强大的PHP集成开发环境

SublimeText3汉化版
中文版,非常好用

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

SublimeText3 Linux新版
SublimeText3 Linux最新版