前段时间,Meta 发布「分割一切(SAM)」AI 模型,可以为任何图像或视频中的任何物体生成 mask,让计算机视觉(CV)领域研究者惊呼:「CV 不存在了」。之后,CV 领域掀起了一阵「二创」狂潮,一些工作陆续在分割的基础上结合目标检测、图像生成等功能,但大部分研究是基于静态图像的。
现在,一项称为「追踪一切」的新研究为动态视频中的运动估计提出了新方法,能够准确、完整地追踪物体的运动轨迹。
该研究由来自康奈尔大学、谷歌研究院和 UC 伯克利的研究者共同完成。他们联合提出了一种完整且全局一致的运动表征 OmniMotion,并提出一种新的测试时(test-time)优化方法,对视频中每个像素进行准确、完整的运动估计。
- 论文地址:https://arxiv.org/abs/2306.05422
- 项目主页:https://omnimotion.github.io/
有网友在推特上转发了这项研究,仅一天时间就收获了 3500 + 的点赞量,研究内容大受好评。
从该研究发布的 demo 看,运动追踪的效果非常好,例如追踪跳跃袋鼠的运动轨迹:
荡秋千的运动曲线:
还能交互式查看运动追踪情况:
即使物体被遮挡也能追踪运动轨迹,如狗在跑动的过程中被树遮挡:
在计算机视觉领域,常用的运动估计方法有两种:稀疏特征追踪和密集光流。但这两种方法各有缺点,稀疏特征追踪不能建模所有像素的运动;密集光流无法长时间捕获运动轨迹。
该研究提出的 OmniMotion 使用 quasi-3D 规范体积来表征视频,并通过局部空间和规范空间之间的双射(bijection)对每个像素进行追踪。这种表征能够保证全局一致性,即使在物体被遮挡的情况下也能进行运动追踪,并对相机和物体运动的任何组合进行建模。该研究通过实验表明所提方法大大优于现有 SOTA 方法。
方法概述
该研究将帧的集合与成对的噪声运动估计(例如光流场)作为输入,以形成整个视频的完整、全局一致的运动表征。然后,该研究添加了一个优化过程,使其可以用任何帧中的任何像素查询表征,以在整个视频中产生平滑、准确的运动轨迹。值得注意的是,该方法可以识别画面中的点何时被遮挡,甚至可以穿过遮挡追踪点。
OmniMotion 表征
传统的运动估计方法(例如成对光流),当物体被遮挡时会失去对物体的追踪。为了在遮挡的情况下也能提供准确、一致的运动轨迹,该研究提出全局运动表征 OmniMotion。
该研究试图在没有显式动态 3D 重建的情况下准确追踪真实世界的运动。OmniMotion 表征将视频中的场景表示为规范的 3D 体积,通过局部规范双射(local-canonical bijection)映射成每个帧中的局部体积。局部规范双射被参数化为神经网络,并在不分离两者的情况下捕获相机和场景运动。基于此种方法,视频可以被视为来自固定静态相机局部体积的渲染结果。
由于 OmniMotion 没有明确区分相机和场景运动,所以形成的表征不是物理上准确的 3D 场景重建。因此,该研究称其为 quasi-3D 表征。
OmniMotion 保留了投影到每个像素的所有场景点的信息,以及它们的相对深度顺序,这让画面中的点即使暂时被遮挡,也能对其进行追踪。
实验及结果
定量比较
研究者将提出的方法与 TAP-Vid 基准进行比较,结果如表 1 所示。可以看出,在不同的数据集上,他们的方法始终能实现最佳的位置准确性、遮挡准确性和时序一致性。他们的方法可以很好地处理来自 RAFT 和 TAP-Net 的不同的成对对应输入,并且在这两种基准方法上提供了一致的改进。
定性比较
如图 3 所示,研究者对他们的方法和基线方法进行了定性比较。新方法在(长时间)遮挡事件中显示出了出色的识别和追踪的能力,同时在遮挡期间为点提供合理的位置,并处理很大的摄像机运动视差。
消融实验与分析
研究者利用消融实验来验证他们设计决策的有效性,结果如表 2 所示。
在图 4 中,他们展示了由他们的模型生成的伪深度图,以展示学习到的深度排序。
需要注意的是,这些图并不对应于物理深度,然而,它们展示了仅使用光度和光流信号时,新方法能够有效地确定不同表面之间的相对顺序,这对于在遮挡中进行追踪至关重要。更多的消融实验和分析结果可以在补充材料中找到。
以上是随时随地,追踪每个像素,连遮挡都不怕的「追踪一切」视频算法来了的详细内容。更多信息请关注PHP中文网其他相关文章!

拥抱Face的OlympicCoder-7B:强大的开源代码推理模型 开发以代码为中心的语言模型的竞赛正在加剧,拥抱面孔与强大的竞争者一起参加了比赛:OlympicCoder-7B,一种产品

你们当中有多少人希望AI可以做更多的事情,而不仅仅是回答问题?我知道我有,最近,我对它的变化感到惊讶。 AI聊天机器人不仅要聊天,还关心创建,研究

随着智能AI开始融入企业软件平台和应用程序的各个层面(我们必须强调的是,既有强大的核心工具,也有一些不太可靠的模拟工具),我们需要一套新的基础设施能力来管理这些智能体。 总部位于德国柏林的流程编排公司Camunda认为,它可以帮助智能AI发挥其应有的作用,并与新的数字工作场所中的准确业务目标和规则保持一致。该公司目前提供智能编排功能,旨在帮助组织建模、部署和管理AI智能体。 从实际的软件工程角度来看,这意味着什么? 确定性与非确定性流程的融合 该公司表示,关键在于允许用户(通常是数据科学家、软件

参加Google Cloud Next '25,我渴望看到Google如何区分其AI产品。 有关代理空间(此处讨论)和客户体验套件(此处讨论)的最新公告很有希望,强调了商业价值

为您的检索增强发电(RAG)系统选择最佳的多语言嵌入模型 在当今的相互联系的世界中,建立有效的多语言AI系统至关重要。 强大的多语言嵌入模型对于RE至关重要

特斯拉的Austin Robotaxi发射:仔细观察Musk的主张 埃隆·马斯克(Elon Musk)最近宣布,特斯拉即将在德克萨斯州奥斯汀推出的Robotaxi发射,最初出于安全原因部署了一支小型10-20辆汽车,并有快速扩张的计划。 h

人工智能的应用方式可能出乎意料。最初,我们很多人可能认为它主要用于代劳创意和技术任务,例如编写代码和创作内容。 然而,哈佛商业评论最近报道的一项调查表明情况并非如此。大多数用户寻求人工智能的并非是代劳工作,而是支持、组织,甚至是友谊! 报告称,人工智能应用案例的首位是治疗和陪伴。这表明其全天候可用性以及提供匿名、诚实建议和反馈的能力非常有价值。 另一方面,营销任务(例如撰写博客、创建社交媒体帖子或广告文案)在流行用途列表中的排名要低得多。 这是为什么呢?让我们看看研究结果及其对我们人类如何继续将


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

螳螂BT
Mantis是一个易于部署的基于Web的缺陷跟踪工具,用于帮助产品缺陷跟踪。它需要PHP、MySQL和一个Web服务器。请查看我们的演示和托管服务。

EditPlus 中文破解版
体积小,语法高亮,不支持代码提示功能

ZendStudio 13.5.1 Mac
功能强大的PHP集成开发环境

安全考试浏览器
Safe Exam Browser是一个安全的浏览器环境,用于安全地进行在线考试。该软件将任何计算机变成一个安全的工作站。它控制对任何实用工具的访问,并防止学生使用未经授权的资源。

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)