看点 随着ChatGPT的兴起,许多工作岗位被人工智能改变甚至取代的趋势已经日渐清晰。那么究竟哪些职业将受到最强烈的冲击?拥有怎样的特点,才会尽量避免被人工智能取代?听 复旦大学人工智能专家张军平教授的见解,看看你的工作未来安全吗?
文章已获“一条”(ID: yitiaotv)授权,转载请联系原作者
自述丨 张军平责编丨刘亚萌
编辑丨May
今年5月1日国际劳动节当天,第一波AI失业潮到来,科技巨头IBM公司宣布暂停7800人的招聘,称这些岗位的工作将由AI取代。
此前3月底,高盛集团发布报告,预计全球将有3亿工作岗位会被生成式AI取代,其中律师和行政人员受影响最大。
AI生成美女图,以假乱真
AI超现实创作:上班族在地铁里看金鱼、瓜农川普
在中文网站,因为ChatGPT和Midjourney,也陆续出现了第一批失业的设计师和文案编辑。
未来3-5年,什么样的工作会被AI取代?
哪些行业是相对安全的?
如果想要成为AI工程师,需要什么样的能力?
以及文科生可以转AI吗?
文章采访了复旦大学人工智能专家张军平教授,针对以上问题做了解答。
未来3-5年
哪些工作会被AI取代?
张军平教授行走在复旦校园里
ChatGPT-4的出现是令人震惊的,我们做AI研究的,知道迟早会有这么个东西出来,不过没想到这么快,以及跑出来的性能这么好。
3月份以来,我朋友圈里很多人都在晒ChatGPT-4的聊天截图,非常狂热。再加上Midjourney V5一起,大家都很担心,自己的工作会不会被AI取代?
人机共存场景 ,一条编辑部经由Midjourney 生成
这个担忧是合理的。
ChatGPT-4最令人惊艳的一点,是它的 “涌现功能”,就是当它训练的数据量足够大的时候,这个复杂的系统,就诞生了其各组成部分所没有的属性—— 接近人类的“思维模式”和“智力表现”。
里面有个思维链,帮助ChatGPT-4去“链式思考”。就像我们有时候做作业,到了某个节点,做不出来,然后家长说“你再想一想”,其实也没说什么,但是这个学生就觉得我可能还有一些东西没掌握,通过慢慢想和一点点的引导,就突然把一个正确答案得出来了。
所以你在对话框里,让ChatGPT-4 “再想想”,它也会再给你一个改进过的答案,大家就会觉得很惊讶。
因为AI对生产效率的提高,一个优秀的人才可以做很多工作,由一小部分人运营一个大市值公司的现象,以后可能会越来越多。你看Midjourney就是个典型,员工只有11人,但是年营收1亿美金。
AI生成“失火”的白领工位
细看来,未来3-5年内容易被取代的工作,有两个标准: 脑力工作和 简单易重复。确实白领受影响比较大。
我自己的生活里,现在接快递电话,好多是机器人。国内科研工作者写论文要翻译成英文,以往可能要找国外的母语翻译者,以后说不定可以尝试ChatGPT-4翻译,它速度快,把领域内的专有名词限定下,应该会很不错。
Office365里嵌入ChatGPT,
能自动生成简报、表格
接下来最危险的是 办公室文员、人力资源, 还有 做财务报表的。
微软Office365已经把ChatGPT嵌入到Word、PPT和 Excel里了,可以自动生成简报、PPT和表格,你以往费心学习的这些Office技能价值就下降了。
有个段子说“财务不会被AI替代,因为它不能做替罪羊”,虽然有点道理,但生产效率提高了,意味着公司对财务的人才需求压缩,你的就业空间就变小。
另外还有 律师行业。我们知道律师很重要的一块工作是熟练法条和查找以往的案例,查找的过程是非常耗时间的,律所里应该专门有一部分人做这块工作。
换成AI的话,它把所有的案例都收过来,ChatGPT用对话的方式给你,速度非常快,那么以前做这部分工作的律师,就不再需要了。
程序员们在工作,一条编辑部经由Midjourney 生成
ChatGPT-4也会生成代码的, 部分程序员会受到影响,尤其是前端。因为前端设计比较模块化,并没有涉及到很复杂的计算。OpenAI有个演示,就是在纸上画个草图,然后ChatGPT-4就给你跑出来了一个网页。
从公司的角度,有可能以后会更加倾向于ChatGPT写代码。因为每个人写代码的风格是不一样的,一个员工走了,新员工过来,因为不顺手,可能要重写代码。那么ChatGPT的一致性会更好,从公司的角度来说,更加有效率。
AI生成的风格插画
受Midjourney影响的插画师、设计师,我网上看到有些人已经被裁员。你人完成一副插画可能要花2天时间,机器几分钟就出来了,效果还很好,这在迫使大家去做更具有创新性的工作。
一个有意思的现象是,一部分AI研究者自己的工作,都被AI干掉了。
然后我们就讨论是为什么?以往科研院校,3-5年会出些成果,细细碎碎的需要那么些人去做,但是ChatGPT-4出来之后,它把很多问题都解决了,剩下都是一些非常难啃的硬骨头,那么你是不需要那么多教职去做的,就导致一些岗位被减掉。
未来10年哪些行业是安全的?
文科生可以转AI吗?
制作漆器的手工艺人
首先,跟实体相关的工作,比如医生、护工、驾驶员,还有小众手工艺者,比如做古琴的、做陶瓷的艺术家,都是 依赖个人经验来做的,被AI替代的概率较小。
因为一直以来AI大多在做认知相关的任务,感知这块下的功夫少,现阶段跟实体相关的都做不好,与人类相比,机械手比较初级,拧一个瓶盖还是很难的事情。
就连打扫卫生,对我们人类来说是“简单易重复”,但对机器却是一个模糊的概念,没有办法程序化或形式化。
那么对于白领工作,还有一部分比较安全,就是大数据进入不了的行业。
《滚蛋吧,肿瘤君》剧照
我们想想ChatGPT是怎么起来的?它的数据都是Billion级的,就是10亿级以上,这就意味着这么多数据,很有可能都是不设隐私的,才能被它调用。
如果一个行业涉及到隐私,数据不能公开,不能上模型训练,那么AI就挤不进去。 比如说医疗、银行、生物等领域,相对来说是安全的。
所以我的一些学生,他们就不在互联网公司找工作了,而是会去一些数据相对封闭的领域,稳定一些。
如果高中生选专业,只考虑就业前景的话,我觉得人工智能方向目前还是最好的,所谓“不入虎穴焉得虎子”。
我们有个新名词叫做 AI for Science,用人工智能帮助科学发展,以后各行各业都需要AI的辅助,要由懂AI方向的人来操作,那么就会有一个非常大的人才缺口。
AI研究员,一条编辑部经由Midjourney 生成
一个好的AI研究者或工程师,需要三个基本素质: 数学基础、编程能力、英文。学英文是因为要跟踪国际最前沿的技术,读文献资料,然后对编程能力的要求,要比数学高一些。
现在不像以前那样需要了解特别深的人工智能知识,如果你是计算机或其他理工科专业,转AI的话门槛并没有那么高。
首先,现在的研究大部分是模块化,深度网络都是一些模型,就像积木一样在搭。算法方面,在ArXiv上你能够快速知道最新的算法是什么样子,代码呢本身就有很多网站,比如Github上的代码是共享的。这三点,就使得你现在进入这个行业是比较容易的。
文科生也有机会转AI的,我们复旦有中文系的学生,转到我们做自然语言处理的这个组,做得还挺好的。
目前国内AI发展如何?
多久能追上国外的水平?
机器人与女孩一起在农场工作,一条编辑部经由Midjourney 生成
首先,我们确实需要追赶,不追不行,要不然就会被卡脖子。
据说GPT5已经训练完了,那我们什么时候能追上国外的?目前有两派:
一派是乐观派,觉得问题不大,2-3个月能追上。
另一派是悲观派,觉得需要1年至1年半。
可能你觉得1年时间不算太久,其实这里面有些麻烦的地方。
目前AI主流的发展路径是三大块: 模型、算力、大数据。
乐观的地方是,模型框架前辈们都做好了,几乎是公开的,研究人员把它做大、做深就行了。
深度学习之父Geoffrey Hinton
2006年Geoffrey Hinton就提出来了深度学习模型,之后有一个图像分类竞赛上采用了大规模数据集ImageNet,2012年Geoffrey Hinton就带着他的学生为这个竞赛做了新的深度学习模型,一下子就令人震惊了,比上一届冠军性能提升了 将近10个百分点。
这是什么概念呢?如果你是用传统机器学习方法来做,每年就提高0.3-0.4个百分点。这意味着,深度学习的方法比传统机器学习方法,加快了20年左右。所以那时候,大家都转到做深度学习模型。
但是深度学习模型,是需要强大的算力的,在特定的GPU芯片上面跑。
但是我们国家,目前在算力上有瓶颈,因为2022年12月份,美国对中国禁售了A100以上的GPU。这样国内没法用A100(有替代品,但通讯模块受限),但国外还能用比A100更好的卡,这就有点麻烦了。
现在我们做研究成本很高,也是因为GPU,以往你发文章只需要时间和人力成本,但是现在一篇论文的成本说不定在10万人民币左右。
再一个就是大数据,中文语料库推不上去。
ChatGPT有10亿级以上的数据做预训练,它都是英文的,但是我们中文的每个平台,都设了一个进入的门槛,防止你大范围搜索,另外还有格式的问题,这就导致我们堆数据,没有国外那么方便。
而且ChatGPT-2之后就没有开源了,你也不知道确切的差距到底在哪里。
现在国内的AI投资很火,资本层面的驱动还是蛮重要的。而且我们复旦前段时间发布了一个Moss系统,还开源了,相对来讲还是一个比较小的模型,大家都还是在努力的。
上海街头的机器人,一条编辑部经由Midjourney 生成
从历史上来讲,人工智能不到90年,我们一般认为它的开端,是1936年的图灵机,期间一直经历涨跌的过程。
七八十年代它经历第一次寒冬,当时如果你说自己是做人工智能的,是拿不到项目的。在90年代初,又经历了第二次寒冬。
我自己是从小喜欢看科幻小说,接触AI是在1997年,当时更流行叫自己是做机器学习而非人工智能的。
我的感受是到了2012年,也就是Geoffrey Hinton带着学生赢得了竞赛那一年,人工智能才真正迎来腾飞。
2016年AlphaGo对弈韩国围棋手李世石
到了2016年AlphaGo赢了李世石,然后2017年谷歌研究出了Transformer网络,这之后才有了ChatGPT的一系列工作,还有自动驾驶、AI金融、AI医疗等各个领域都在前进。
但其实到2022年,AI行业有点往下走的趋势了,因为大家觉得该做的都做了,并没有看到很好的应用,很明显的是有些大公司的深度学习这块,已经在裁员了。但突然今年3月一下子ChatGPT-4出来了,就又把大家都拉了回来。
所以它有兴盛期,也有衰败期。我自己在这个领域待久了,对于ChatGPT-4掀起的热潮看得比较冷静一些吧。 AI的研究范围是很宽泛的,很多问题很难,难以在短时间内变现,人类对智能的理解还有很长的路要走。
作为一名研究者,乐趣还是在于探索未知,你在未知里面可以找到一点点进步,那个愉悦感就很令人满足了。
每天一条短视频,每天讲述一个动人的故事,每天精选人间美物,每天来和我一起过美好的生活。一条(ID:yitiaotv)
关注外滩教育
发现优质教育
以上是复旦人工智能教授:未来3-5年,哪些工作不会被AI取代?的详细内容。更多信息请关注PHP中文网其他相关文章!

科学家已经广泛研究了人类和更简单的神经网络(如秀丽隐杆线虫中的神经网络),以了解其功能。 但是,出现了一个关键问题:我们如何使自己的神经网络与新颖的AI一起有效地工作

Google的双子座高级:新的订阅层即将到来 目前,访问Gemini Advanced需要$ 19.99/月Google One AI高级计划。 但是,Android Authority报告暗示了即将发生的变化。 最新的Google P中的代码

尽管围绕高级AI功能炒作,但企业AI部署中潜伏的巨大挑战:数据处理瓶颈。首席执行官庆祝AI的进步时,工程师努力应对缓慢的查询时间,管道超载,一个

处理文档不再只是在您的AI项目中打开文件,而是将混乱变成清晰度。诸如PDF,PowerPoints和Word之类的文档以各种形状和大小淹没了我们的工作流程。检索结构化

利用Google的代理开发套件(ADK)的力量创建具有现实世界功能的智能代理!该教程通过使用ADK来构建对话代理,并支持Gemini和GPT等各种语言模型。 w

摘要: 小型语言模型 (SLM) 专为效率而设计。在资源匮乏、实时性和隐私敏感的环境中,它们比大型语言模型 (LLM) 更胜一筹。 最适合专注型任务,尤其是在领域特异性、控制性和可解释性比通用知识或创造力更重要的情况下。 SLM 并非 LLMs 的替代品,但在精度、速度和成本效益至关重要时,它们是理想之选。 技术帮助我们用更少的资源取得更多成就。它一直是推动者,而非驱动者。从蒸汽机时代到互联网泡沫时期,技术的威力在于它帮助我们解决问题的程度。人工智能 (AI) 以及最近的生成式 AI 也不例

利用Google双子座的力量用于计算机视觉:综合指南 领先的AI聊天机器人Google Gemini扩展了其功能,超越了对话,以涵盖强大的计算机视觉功能。 本指南详细说明了如何利用

2025年的AI景观正在充满活力,而Google的Gemini 2.0 Flash和Openai的O4-Mini的到来。 这些尖端的车型分开了几周,具有可比的高级功能和令人印象深刻的基准分数。这个深入的比较


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

VSCode Windows 64位 下载
微软推出的免费、功能强大的一款IDE编辑器

SublimeText3 Linux新版
SublimeText3 Linux最新版

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

mPDF
mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),