我们已经看到 COVID-19 如何对企业施加压力,要求他们将其数字化转型之旅加快数月,在某些情况下甚至数年。 大流行的到来使他们重新考虑触手可及的技术——尤其是人工智能 (AI)——并利用它们来提高生产力、解决供应链问题并无缝交付产品和服务。 组织已经意识到将 AI 集成到其数字战略中的必要性,本文将重点关注解决常见的 AI 采用挑战。
人工智能是一项革命性的技术,可以节省时间、精力和金钱。它不再局限于科学教科书或科幻幻想;它在现实世界中有无数的应用。企业现在承认实施这种未来技术的重要性。事实上,机器智能的高水平渗透可以解决根本问题。
麦肯锡的一项调查表明,人工智能的采用率在 2021 年呈上升趋势,并将继续如此。它指出,“56% 的受访者表示至少在一项功能中采用了人工智能,高于 2020 年的 50%。”
虽然企业已经意识到采用人工智能是前进的方向,但这并不总是那么容易。那么,阻碍企业实现这一下一代技术巨大潜力的关键障碍是什么?让我们一一讨论这些人工智能采用挑战。
道德考量
采用人工智能的第一个挑战是,随着组织将人工智能与更多流程相结合,道德如何成为一个紧迫的问题。人工智能给人类偏见带来了看似科学的信任,并倾向于放大它们,使其决策潜力受到质疑。幸运的是,我们有一个解决方案。
一个有希望的迹象是人们越来越意识到这个问题,承认人工智能存在偏见的潜力是第一步。当企业训练他们的 AI/ML 模型时,他们必须积极对抗有偏见的数据,并专门对他们的 AI 进行编程以使其不偏不倚。此外,注释者必须在将训练数据输入算法之前仔细分析训练数据。这样,它不会导致有偏见的结论。
数据质量差
采用 AI 获利的最关键障碍之一是使用的数据质量差。任何 AI 应用程序的智能程度取决于它可以访问的信息。不相关或标记不准确的数据集可能会阻止应用程序正常工作。
许多组织收集了太多的数据。它可能充满不一致和冗余,导致数据衰减。通过简化收集过程可以提高数据质量。利益相关者必须更加关注数据清洗、标签和仓储。这些工作流程变化可以为企业提供高质量的数据。
数据治理
面对不断上升的网络犯罪,负责任的数据治理比以往任何时候都更加重要。人们担心公司如何访问和使用他们的机密信息,因此利用面向客户的人工智能的组织在部署应用程序时要对自己负责,这一点很重要。
这里的关键是细分和可见性。组织必须确保他们可以监控和限制他们的人工智能算法如何在所有阶段使用数据。分段可减轻违规的影响并尽可能保证用户信息的安全。同样,透明的数据收集政策也有助于缓解与人工智能相关的担忧。
流程缺陷
公司经常使用内部工具和管道进行 AI 部署和监控。从头开始构建高效的 AI 模型需要大量的时间和金钱。所以,如果你刚刚开始,人工智能的采用可能会让你付出高昂的代价。此外,您的工具可能包含不适当的算法和有偏见的数据。在这种情况下,采用第三方工具进行人工智能集成或使用经过市场检验的工具是一个比较明智的选择。
网络安全
人工智能实施引入了网络安全风险。为了收集人工智能计划的数据,已经发生了许多数据泄露事件。因此,保护存储数据免受恶意软件和黑客攻击应该是公司的首要任务。强大的网络安全防御方法可以帮助防止此类攻击。此外,AI 采用领导者需要承认复杂威胁日益严重的威胁,并从被动策略转变为主动策略。
存储限制
训练 AI/ML 模型需要恒定数量的高质量标记数据集。因此,组织需要将大量数据输入机器学习算法,以便他们能够执行所需的活动并提供可靠的结果。
这已经变得具有挑战性,因为传统的存储技术非常昂贵并且具有空间限制。然而,闪存等最近的技术突破似乎提供了一种解决方案。与昂贵的传统硬盘不同,闪存存储更可靠且价格合理。
合规性
人工智能和其他以数据为中心的运营越来越受到法律法规的日益重视。组织必须遵守这些限制,特别是如果他们在金融和医疗保健等高度监管的行业运营。
采取灵活的方法来维护高隐私和治理标准可以帮助这些公司更加合规。由于法规的增加,第三方审计师更有可能受到需求。
前进的道路
人工智能正逐渐成为改变游戏规则的人,其潜力值得一试。普华永道的一项研究指出,“到 2030 年,人工智能可能为全球经济贡献高达 15.7 万亿美元,超过目前中国和印度的产出总和。其中,6.6 万亿美元可能来自生产力提高,9.1 万亿美元可能来自消费副作用。”
但是什么可以让人工智能为公司服务?预测人工智能采用的障碍并采取战略实施方法可以帮助组织实现转型增长并最大化回报。
以上是人工智能采用的七个最大障碍及其解决方案的详细内容。更多信息请关注PHP中文网其他相关文章!

法律技术革命正在获得动力,促使法律专业人员积极采用AI解决方案。 对于那些旨在保持竞争力的人来说,被动抵抗不再是可行的选择。 为什么技术采用至关重要? 法律专业人员

许多人认为与AI的互动是匿名的,与人类交流形成了鲜明的对比。 但是,AI在每次聊天期间都会积极介绍用户。 每个单词的每个提示都经过分析和分类。让我们探索AI Revo的这一关键方面

成功的人工智能战略,离不开强大的企业文化支撑。正如彼得·德鲁克所言,企业运作依赖于人,人工智能的成功也同样如此。 对于积极拥抱人工智能的组织而言,构建适应AI的企业文化至关重要,它甚至决定着AI战略的成败。 西蒙诺咨询公司(West Monroe)近期发布了构建蓬勃发展的AI友好型企业文化的实用指南,以下是一些关键要点: 1. 明确AI的成功模式: 首先,要对AI如何赋能业务有清晰的愿景。理想的AI运作文化,能够实现人与AI系统之间工作流程的自然融合。AI擅长某些任务,而人类则擅长创造力、判

Meta升级AI助手应用,可穿戴式AI时代来临!这款旨在与ChatGPT竞争的应用,提供文本、语音交互、图像生成和网络搜索等标准AI功能,但现在首次增加了地理位置功能。这意味着Meta AI在回答你的问题时,知道你的位置和正在查看的内容。它利用你的兴趣、位置、个人资料和活动信息,提供最新的情境信息,这在以前是无法实现的。该应用还支持实时翻译,这彻底改变了Ray-Ban眼镜上的AI体验,使其实用性大大提升。 对外国电影征收关税是对媒体和文化的赤裸裸的权力行使。如果实施,这将加速向AI和虚拟制作的

人工智能正在彻底改变网络犯罪领域,这迫使我们必须学习新的防御技巧。网络罪犯日益利用深度伪造和智能网络攻击等强大的人工智能技术进行欺诈和破坏,其规模前所未有。据报道,87%的全球企业在过去一年中都成为人工智能网络犯罪的目标。 那么,我们该如何避免成为这波智能犯罪的受害者呢?让我们探讨如何在个人和组织层面识别风险并采取防护措施。 网络罪犯如何利用人工智能 随着技术的进步,犯罪分子不断寻找新的方法来攻击个人、企业和政府。人工智能的广泛应用可能是最新的一个方面,但其潜在危害是前所未有的。 特别是,人工智

最好将人工智能(AI)与人类智力(NI)之间的复杂关系理解为反馈循环。 人类创建AI,对人类活动产生的数据进行培训,以增强或复制人类能力。 这个AI

Anthropic最近的声明强调了关于尖端AI模型缺乏了解,引发了专家之间的激烈辩论。 这是一个真正的技术危机,还是仅仅是通往更秘密的道路上的临时障碍

印度是一个多元化的国家,具有丰富的语言,使整个地区的无缝沟通成为持续的挑战。但是,Sarvam的Bulbul-V2正在帮助弥合其高级文本到语音(TTS)T


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

VSCode Windows 64位 下载
微软推出的免费、功能强大的一款IDE编辑器

SublimeText3汉化版
中文版,非常好用

mPDF
mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver Mac版
视觉化网页开发工具