搜索
首页科技周边人工智能综述联邦学习技术及其应用在图像处理中的现状

近年来,图已被广泛应用于表示和处理很多领域的复杂数据,如医疗、交通运输、生物信息学和推荐系统等。图机器学习技术是获取隐匿在复杂数据中丰富信息的有力工具,并且在像节点分类和链接预测等任务中,展现出很强的性能。

尽管图机器学习技术取得了重大进展,但大多数都需要把图数据集中存储在单机上。然而,随着对数据安全和用户隐私的重视,集中存储数据变的不安全和不可行。图数据通常分布在多个数据源(数据孤岛),由于隐私和安全的原因,从不同的地方收集所需的图数据变的不可行。

例如一家第三方公司想为一些金融机构训练图机器学习模型,以帮助他们检测潜在的金融犯罪和欺诈客户。每个金融机构都拥有私有客户数据,如人口统计数据以及交易记录等。每个金融机构的客户形成一个客户图,其中边代表交易记录。由于严格的隐私政策和商业竞争,各个机构的私有客户数据无法直接与第三方公司或其它他机构共享。同时,机构之间也可能有关联,这可以看作是机构之间的结构信息。因此面临的主要挑战是:在不直接访问每个机构的私有客户数据的情况下,基于私有客户图和机构间结构信息,来训练用于金融犯罪检测的图机器学习模型。

联邦学习(FL)是一种分布式机器学习方案,通过协作训练解决数据孤岛问题。它使参与者(即客户)能够在不共享其私有数据的情况下联合训练机器学习模型。因此,将 FL 与图机器学习相结合成为解决上述问题的有希望的解决方案。

本文中,来自弗吉尼亚大学的研究者提出联邦图机器学习(FGML,Federated Graph Machine Learning)。一般来说,FGML 可以根据结构信息的级别分为两种设置:第一种是具有结构化数据的 FL,在具有结构化数据的 FL 中,客户基于其图数据协作训练图机器学习模型,同时将图数据保留在本地。第二种是结构化 FL,在结构化 FL 中,客户端之间存在结构信息,形成客户端图。可以利用客户端图设计更有效的联合优化方法。

一文综述「联邦图机器学习」,概念、技术、应用全都有

论文地址:https://arxiv.org/pdf/2207.11812.pdf

虽然 FGML 提供了一个有前景的蓝图,但仍存在一些挑战:

1、跨客户端的信息缺失。在具有结构化数据的 FL 中,常见的场景是每个客户端机器都拥有全局图的子图,并且一些节点可能具有属于其他客户端的近邻。出于隐私考虑,节点只能在客户端内聚合其近邻的特征,但无法访问位于其它客户端上的特征,这导致节点表示不足。

2、图结构的隐私泄漏。在传统 FL 中,不允许客户端公开其数据样本的特征和标签。在具有结构化数据的 FL 中,还应考虑结构信息的隐私。结构信息可以通过共享邻接矩阵直接公开,也可以通过传输节点嵌入间接公开。

3、跨客户端的数据异构性。与传统 FL 中数据异构性来自 non-IID 数据样本不同,FGML 中的图数据包含丰富的结构信息。同时,不同客户的图结构也会影响图机器学习模型的性能。 

4、参数使用的策略。在结构化 FL 中,客户端图使客户端能够从其相邻客户端获取信息。在结构化 FL 中,需要设计有效的策略,以充分利用由中心服务器协调或完全分散的近邻信息。

为了应对上述挑战,研究人员开发了大量算法。目前各种算法主要关注标准 FL 中的挑战和方法,只有少数人尝试解决 FGML 中的具体问题和技术。有人发表对 FGML 进行分类的综述性论文,但没有总结 FGML 中的主要技术。而有的综述文章仅涵盖了 FL 中数量有限的相关论文,并非常简要地介绍了目前现有的技术。

一文综述「联邦图机器学习」,概念、技术、应用全都有

而在今天介绍的这篇论文中,作者首先介绍 FGML 中两种问题设计的概念。然后,回顾了每种 shezhi 下的最新的技术进展,还介绍了 FGML 的实际应用。并对可用于 FGML 应用的可访问图数据集和平台进行总结。最后,作者给出了几个有前途的研究方向。文章的主要贡献包括:

FGML 技术分类:文章给出了基于不同问题的 FGML 分类法,并总结了每个设置中的关键挑战。

全面的技术回顾:文章全面概述了 FGML 中的现有技术。与现有其它综述性论文相比,作者不仅研究了更广泛的相关工作,而且提供了更详细的技术分析,而不是简单地列出每种方法的步骤。

实际应用:文章首次总结 FGML 的实际应用。作者根据应用领域对其进行分类,并介绍每个领域中的相关工作。

数据集和平台:文章介绍了 FGML 中现有的数据集和平台,对于想在 FGML 中开发算法和部署应用程序的工程师和研究人员非常有帮助。

未来方向:文章不仅指出了现有方法的局限性,而且给出了 FGML 未来的发展方向。

一文综述「联邦图机器学习」,概念、技术、应用全都有

FGML 技术综述 这里对文章的主要结构做下简介。

第 2 节简要介绍了图机器学习中的定义以及 FGML 中两种设置的概念和挑战。

第 3 节和第 4 节回顾了这两种设置中的主流技术。第 5 节进一步探讨了 FGML 在现实世界中的应用。第 6 节介绍了相关 FGML 论文中使用的开放图数据集和 FGML 的两个平台。在第 7 节中提供了未来可能的发展方向。

最后第 8 节对全文进行了总结。更多详细信息请参考原论文。


以上是综述联邦学习技术及其应用在图像处理中的现状的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文转载于:51CTO.COM。如有侵权,请联系admin@php.cn删除
拥抱面部是否7B型号奥林匹克赛车击败克劳德3.7?拥抱面部是否7B型号奥林匹克赛车击败克劳德3.7?Apr 23, 2025 am 11:49 AM

拥抱Face的OlympicCoder-7B:强大的开源代码推理模型 开发以代码为中心的语言模型的竞赛正在加剧,拥抱面孔与强大的竞争者一起参加了比赛:OlympicCoder-7B,一种产品

4个新的双子座功能您可以错过4个新的双子座功能您可以错过Apr 23, 2025 am 11:48 AM

你们当中有多少人希望AI可以做更多的事情,而不仅仅是回答问题?我知道我有,最近,我对它的变化感到惊讶。 AI聊天机器人不仅要聊天,还关心创建,研究

Camunda为经纪人AI编排编写了新的分数Camunda为经纪人AI编排编写了新的分数Apr 23, 2025 am 11:46 AM

随着智能AI开始融入企业软件平台和应用程序的各个层面(我们必须强调的是,既有强大的核心工具,也有一些不太可靠的模拟工具),我们需要一套新的基础设施能力来管理这些智能体。 总部位于德国柏林的流程编排公司Camunda认为,它可以帮助智能AI发挥其应有的作用,并与新的数字工作场所中的准确业务目标和规则保持一致。该公司目前提供智能编排功能,旨在帮助组织建模、部署和管理AI智能体。 从实际的软件工程角度来看,这意味着什么? 确定性与非确定性流程的融合 该公司表示,关键在于允许用户(通常是数据科学家、软件

策划的企业AI体验是否有价值?策划的企业AI体验是否有价值?Apr 23, 2025 am 11:45 AM

参加Google Cloud Next '25,我渴望看到Google如何区分其AI产品。 有关代理空间(此处讨论)和客户体验套件(此处讨论)的最新公告很有希望,强调了商业价值

如何为抹布找到最佳的多语言嵌入模型?如何为抹布找到最佳的多语言嵌入模型?Apr 23, 2025 am 11:44 AM

为您的检索增强发电(RAG)系统选择最佳的多语言嵌入模型 在当今的相互联系的世界中,建立有效的多语言AI系统至关重要。 强大的多语言嵌入模型对于RE至关重要

麝香:奥斯汀的机器人需要每10,000英里进行干预麝香:奥斯汀的机器人需要每10,000英里进行干预Apr 23, 2025 am 11:42 AM

特斯拉的Austin Robotaxi发射:仔细观察Musk的主张 埃隆·马斯克(Elon Musk)最近宣布,特斯拉即将在德克萨斯州奥斯汀推出的Robotaxi发射,最初出于安全原因部署了一支小型10-20辆汽车,并有快速扩张的计划。 h

AI震惊的枢轴:从工作工具到数字治疗师和生活教练AI震惊的枢轴:从工作工具到数字治疗师和生活教练Apr 23, 2025 am 11:41 AM

人工智能的应用方式可能出乎意料。最初,我们很多人可能认为它主要用于代劳创意和技术任务,例如编写代码和创作内容。 然而,哈佛商业评论最近报道的一项调查表明情况并非如此。大多数用户寻求人工智能的并非是代劳工作,而是支持、组织,甚至是友谊! 报告称,人工智能应用案例的首位是治疗和陪伴。这表明其全天候可用性以及提供匿名、诚实建议和反馈的能力非常有价值。 另一方面,营销任务(例如撰写博客、创建社交媒体帖子或广告文案)在流行用途列表中的排名要低得多。 这是为什么呢?让我们看看研究结果及其对我们人类如何继续将

公司竞争AI代理的采用公司竞争AI代理的采用Apr 23, 2025 am 11:40 AM

AI代理商的兴起正在改变业务格局。 与云革命相比,预计AI代理的影响呈指数增长,有望彻底改变知识工作。 模拟人类决策的能力

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

螳螂BT

螳螂BT

Mantis是一个易于部署的基于Web的缺陷跟踪工具,用于帮助产品缺陷跟踪。它需要PHP、MySQL和一个Web服务器。请查看我们的演示和托管服务。

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

VSCode Windows 64位 下载

VSCode Windows 64位 下载

微软推出的免费、功能强大的一款IDE编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用