一、前言
argparse是python的一个命令行参数解析包,在代码需要频繁修改参数时,方便使用,主要用法就是在命令行输入自己想要修改的参数。
二、关于argparse用法常用框架
import argparse def get_parser(): # argparse.ArgumentParser生成argparse对象 description为描述信息,当在命令行输入需要显示帮助信息时,会显示 parser = argparse.ArgumentParser(description="pytorch unet training") # 路径参数设置 help为参数的帮助信息 parser.add_argument("--data_path", default="./", help="DRIVE root") # 预测类别数量 type如果不指定需要输入的是str类型 parser.add_argument("--num_classes", default=1, type=int) # 指定设备使用 parser.add_argument("--device", default="cuda", help="training device") # 指定batch size大小 "-b", "--batch_size"表示两个都可以在命令行使用 parser.add_argument("-b", "--batch_size", default=4, type=int) return parser if __name__ =='__main__': parser = get_parser() args = parser.parse_args() print(args)
如上get_parser()为本文会介绍的一些使用方法,这个python文件名为python_argparse_test1.py,其中
parser = argparse.ArgumentParser(description="pytorch unet training")用来创建parser对象
add_argument()用来增加参数
args = parser.parse_args()中parse_args()获取解析的参数
1.获取参数列表
当命令行输入python python_argparse_test1.py时,打印args获取到的参数得到:
Namespace(batch_size=4, data_path='./', device='cuda', num_classes=1)
表示这个参数解析器解析到的参数列表
2.获取帮助信息
输入python python_argparse_test1.py -h或者python python_argparse_test1.py --help显示信息,其中usage显示了它的用法,pytorch unet training为创建对象时的description,再下面是各个参数信息与用法
3.命令行修改参数
import argparse def get_parser(): # argparse.ArgumentParser生成argparse对象 description为描述信息,当在命令行输入需要显示帮助信息时,会显示 parser = argparse.ArgumentParser(description="pytorch unet training") # 路径参数设置 help为参数的帮助信息 default为默认参数 parser.add_argument("--data_path", default="./", help="DRIVE root") # 预测类别数量 type如果不指定需要输入的是str类型 parser.add_argument("--num_classes", default=1, type=int) # 指定设备使用 parser.add_argument("--device", default="cuda", help="training device") # 指定batch size大小 "-b", "--batch_size"表示两个都可以在命令行使用 parser.add_argument("-b", "--batch_size", default=4, type=int) return parser if __name__ =='__main__': parser = get_parser() args = parser.parse_args() print("data_path: ",args.data_path) print("num_classes: ", args.num_classes)
命令行输入:python python_argparse_test1.py --data_path Desktop --num_classer 4,得到结果如下:
data_path: Desktop
num_classes: 4
可以看到通过命令行确实修改了参数
4.'_'与"__"的使用
if __name__ =='__main__': parser = get_parser() args = parser.parse_args() print("-b: ",args.b) print("--batch_size: ", args.batch_size)
命令行输入python python_argparse_test1.py -b 10 --batch_size 20,这时会报错:
这是因为当'_'和'__'同时存在时,系统默认后者为参数名
把上述代码改为:
if __name__ =='__main__': parser = get_parser() args = parser.parse_args() print("--batch_size: ",args.batch_size)
但命令行不受影响,继续执行命令 python python_argparse_test1.py -b 10得到:
--batch_size: 10
5.type的使用
type会把输入的命令行字符强制转化为type的类型
if __name__ =='__main__': parser = get_parser() args = parser.parse_args() print("--batch_size type: ",type(args.batch_size))
命令行输入:python python_argparse_test1.py --batch_size '10'得到:
--batch_size type: 4aebba72bb75b78b3914a0cbc776434f
6.required:用来表示这个参数是否需要提供
parser.add_argument("--num_classes", default=1, type=int, required=True)
如果输入命令python python_argparse_test1.py
这将会报错提示确实需要的参数
python_argparse_test1.py: error: the following arguments are required: --num_classes
7.choices选择参数
parser.add_argument('-arch', required=True, choices=['alexnet', 'vgg'])
如果运行命令:python python_argparse_test1.py -arch cnn
这将会报错
python_argparse_test1.py: error: argument -arch: invalid choice: 'cnn' (choose from 'alexnet', 'vgg')
以上是使用 Python argparse:如何处理命令行参数的详细内容。更多信息请关注PHP中文网其他相关文章!

toAppendElementStoApythonList,usetheappend()方法forsingleements,Extend()formultiplelements,andinsert()forspecificpositions.1)useeAppend()foraddingoneOnelementAttheend.2)useextendTheEnd.2)useextendexendExendEnd(

TocreateaPythonlist,usesquarebrackets[]andseparateitemswithcommas.1)Listsaredynamicandcanholdmixeddatatypes.2)Useappend(),remove(),andslicingformanipulation.3)Listcomprehensionsareefficientforcreatinglists.4)Becautiouswithlistreferences;usecopy()orsl

金融、科研、医疗和AI等领域中,高效存储和处理数值数据至关重要。 1)在金融中,使用内存映射文件和NumPy库可显着提升数据处理速度。 2)科研领域,HDF5文件优化数据存储和检索。 3)医疗中,数据库优化技术如索引和分区提高数据查询性能。 4)AI中,数据分片和分布式训练加速模型训练。通过选择适当的工具和技术,并权衡存储与处理速度之间的trade-off,可以显着提升系统性能和可扩展性。

pythonarraysarecreatedusiseThearrayModule,notbuilt-Inlikelists.1)importThearrayModule.2)指定tefifythetypecode,例如,'i'forineizewithvalues.arreaysofferbettermemoremorefferbettermemoryfforhomogeNogeNogeNogeNogeNogeNogeNATATABUTESFELLESSFRESSIFERSTEMIFICETISTHANANLISTS。

除了shebang线,还有多种方法可以指定Python解释器:1.直接使用命令行中的python命令;2.使用批处理文件或shell脚本;3.使用构建工具如Make或CMake;4.使用任务运行器如Invoke。每个方法都有其优缺点,选择适合项目需求的方法很重要。

ForhandlinglargedatasetsinPython,useNumPyarraysforbetterperformance.1)NumPyarraysarememory-efficientandfasterfornumericaloperations.2)Avoidunnecessarytypeconversions.3)Leveragevectorizationforreducedtimecomplexity.4)Managememoryusagewithefficientdata

Inpython,ListSusedynamicMemoryAllocationWithOver-Asalose,而alenumpyArraySallaySallocateFixedMemory.1)listssallocatemoremoremoremorythanneededinentientary上,respizeTized.2)numpyarsallaysallaysallocateAllocateAllocateAlcocateExactMemoryForements,OfferingPrediCtableSageButlessemageButlesseflextlessibility。

Inpython,YouCansspecthedatatAtatatPeyFelemereModeRernSpant.1)Usenpynernrump.1)Usenpynyp.dloatp.dloatp.ploatm64,formor professisconsiscontrolatatypes。


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver Mac版
视觉化网页开发工具

VSCode Windows 64位 下载
微软推出的免费、功能强大的一款IDE编辑器

EditPlus 中文破解版
体积小,语法高亮,不支持代码提示功能

Atom编辑器mac版下载
最流行的的开源编辑器