人工智能终于证明了几十年来一直围绕着它的炒作是正确的。虽然人工智能还不是人类的救世主,但它已经从概念发展到现实,实际应用正在让我们的世界变得更美好。
然而,许多人工智能的神奇壮举都是隐藏的,只有当你透过世俗的伪装,才能观察到它的影响。以一家在30多个国家运营的大型保险公司为例。该公司每年要处理超过2000万个客户电话。通过利用语音转文字技术和自然语言处理,他们能够分析电话的内容,以满足特定的业务需求:控制销售质量,理解客户的表达和需求,获得情绪反馈和分析数据,等等。
再看看全球顶级可再生能源生产商AES。可再生能源比传统能源需要更多的设备来管理和监控。数据科学和AI通过自动化提高AES的运营效率,并提供数据驱动的洞察,增强性能工程师的行动和决策。这确保了满足正常运行时间的要求,并尽可能快速、高效和低成本地将清洁能源交付给客户。AES也在为拯救世界尽自己的一份力。
这些和无数已经投入生产的人工智能应用一样,获得越来越多的关注。然而到目前为止,人工智能的潜力仍受到三个关键限制:
- 计算能力不足;
- 需要将数据绑定到特定的(集中的)位置;
- 缺乏训练数据。
由于一些关键的技术创新,一场翻天覆地的变化正在发生,AI正摆脱这些束缚,企业必须准备好利用这项强大的技术。
让我们来看看这些限制因素——阻碍人工智能发展的枷锁——以及未来它们是如何被打破的。
AI枷锁1:计算能力
传统上,企业没有足够的处理能力来驱动AI模型并保持其正常运行。企业一直在考虑是否应该完全依赖云环境来获得所需的资源,还是将计算投资分配给云和内部资源更好。
内部的、预置的GPU集群现在为企业提供了一个选择。如今,有几个更大、更先进的组织正在关注生产用例,并投资于他们自己的GPU集群(例如,NVIDIA DGX SuperPOD)。GPU集群为企业提供了运行所需的专用马力。
大量的训练模型——如果它们利用基于软件的分布式计算框架。这样的框架可以抽象出在不同GPU节点上手动解析训练工作负载的困难。
AI枷锁2:集中数据
数据通常被收集、处理和存储在一个集中的位置,通常被称为数据仓库,为公司的工作创造一个单一的真相来源。
维护单一的数据存储库使其易于管理、监视和迭代。就像公司现在可以选择投资于在线或云计算能力一样,近年来出现了一种通过分散数据来创建数据仓库灵活性的运动。
数据本地化法则可能使分布式企业的数据无法聚合。而且数据模型的边缘用例的迅速涌现使得单一数据仓库的概念不再是绝对的。
今天,大多数组织都在运行混合云,因此数据需要绑定到一个特定位置的日子已经一去不复返了。当我们看到企业继续利用混合云时,他们获得了混合云的所有好处——包括在边缘部署模型的灵活性。
AI枷锁3:训练数据
缺乏有用的数据一直是人工智能扩散的主要障碍。虽然我们在技术上被数据包围,但收集和存储数据可能非常耗时、乏味和昂贵。还有偏见的问题。在开发和部署AI模型时,它们需要是平衡的,没有偏见,以确保它们产生的见解是有价值的,不会造成伤害。但正如现实世界有偏见,数据也有偏见。为了扩展模型的使用,你需要大量的数据,同时全力修正数据偏见。
为了克服这些挑战,企业正在转向合成数据。事实上,合成数据正在急速上升。Gartner估计,到2024年,人工智能应用中60%的数据将是合成的。对于数据科学家来说,数据的性质(真实的或合成的)是无关紧要的。重要的是数据的质量。合成数据消除了潜在的偏差。它的规模也很容易扩大,采购成本也更低。通过合成数据,企业还可以选择预先标记的数据,从而大大减少了生产和生成用于训练模型的原料所需的时间和资源。
人工智能的崛起
随着人工智能从数据质量、计算和位置的束缚中解放出来,更多涉及我们日常生活的用例和更精确的模型将会出现。如今已经看到领先的组织用人工智能优化业务流程,那些不采取行动跟上的组织将处于明显的竞争劣势。
为了充分获得人工智能的好处,实施需要自上而下。虽然数据科学家做着模型开发和部署的艰苦工作,但为了将人工智能最好地融入他们的商业战略,高管们也必须接受有关概念的教育。了解人工智能技术及其潜力的行政领导者可以对人工智能进行更好的战略投资,从而对他们的业务进行更好的战略投资。
相反,当他们不知道人工智能如何有效地支持商业目标时,他们可能只会把钱投入某些应用,并希望利用人工智能和人工智能的新研究项目取得成果。这是一种次优的自底向上方法。相反,高管需要与数据科学从业者和员工领导者合作,学习如何将这些技术最好地融入到他们的常规商业计划中。
2023年,我们有望看到人工智能的束缚逐渐被放松(如果没有被完全打破的话),那么是时候让企业通过投资解决方案来帮助释放人工智能的全部潜力了,这些解决方案将让世界变得更美好,进而帮助这些企业在当今的数字经济中保持竞争力。
以上是2023展望:数字化未来在于消除人工智能枷锁的详细内容。更多信息请关注PHP中文网其他相关文章!

拥抱Face的OlympicCoder-7B:强大的开源代码推理模型 开发以代码为中心的语言模型的竞赛正在加剧,拥抱面孔与强大的竞争者一起参加了比赛:OlympicCoder-7B,一种产品

你们当中有多少人希望AI可以做更多的事情,而不仅仅是回答问题?我知道我有,最近,我对它的变化感到惊讶。 AI聊天机器人不仅要聊天,还关心创建,研究

随着智能AI开始融入企业软件平台和应用程序的各个层面(我们必须强调的是,既有强大的核心工具,也有一些不太可靠的模拟工具),我们需要一套新的基础设施能力来管理这些智能体。 总部位于德国柏林的流程编排公司Camunda认为,它可以帮助智能AI发挥其应有的作用,并与新的数字工作场所中的准确业务目标和规则保持一致。该公司目前提供智能编排功能,旨在帮助组织建模、部署和管理AI智能体。 从实际的软件工程角度来看,这意味着什么? 确定性与非确定性流程的融合 该公司表示,关键在于允许用户(通常是数据科学家、软件

参加Google Cloud Next '25,我渴望看到Google如何区分其AI产品。 有关代理空间(此处讨论)和客户体验套件(此处讨论)的最新公告很有希望,强调了商业价值

为您的检索增强发电(RAG)系统选择最佳的多语言嵌入模型 在当今的相互联系的世界中,建立有效的多语言AI系统至关重要。 强大的多语言嵌入模型对于RE至关重要

特斯拉的Austin Robotaxi发射:仔细观察Musk的主张 埃隆·马斯克(Elon Musk)最近宣布,特斯拉即将在德克萨斯州奥斯汀推出的Robotaxi发射,最初出于安全原因部署了一支小型10-20辆汽车,并有快速扩张的计划。 h

人工智能的应用方式可能出乎意料。最初,我们很多人可能认为它主要用于代劳创意和技术任务,例如编写代码和创作内容。 然而,哈佛商业评论最近报道的一项调查表明情况并非如此。大多数用户寻求人工智能的并非是代劳工作,而是支持、组织,甚至是友谊! 报告称,人工智能应用案例的首位是治疗和陪伴。这表明其全天候可用性以及提供匿名、诚实建议和反馈的能力非常有价值。 另一方面,营销任务(例如撰写博客、创建社交媒体帖子或广告文案)在流行用途列表中的排名要低得多。 这是为什么呢?让我们看看研究结果及其对我们人类如何继续将


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

禅工作室 13.0.1
功能强大的PHP集成开发环境

SublimeText3汉化版
中文版,非常好用

MinGW - 适用于 Windows 的极简 GNU
这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。

PhpStorm Mac 版本
最新(2018.2.1 )专业的PHP集成开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)